
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 11 Advanced Digital Communications
Solutions to Homework 4 Oct. 24, 2016

Solution 1.

(a) An i.i.d. random process implies that for an arbitrary set {n1, . . . , nK},

pX[n1]...X[nK](x[n1], . . . x[nK]) = pX[n1](x[n1]) . . . pX[nk](x[nK])

pX[ni] = pX[nj], i, j = 1 . . . , K.

Then, we have for any integer M ,

pX[n1+M]...X[nK+M](x[n1 +M], . . . , x[nK +M])
(∗)
=

nK∏
i=n1

pX[i+M](x)

(†)
=

nK∏
i=n1

pX[i](x)

(#)
= pX[n1]...X[nK](x[n1], . . . , x[nK]),

where (∗) and (#) follow by independence and (†) follows by identical distribution.
Thus, every i.i.d. random process is stationary.

Moreover, it is clear that the mean mX[n] = E[X[n]] is constant 0 for any n. As for the
autocorrelation function, we have

RX [n,m] = E[X[n]X[m]]

=

{
E[X[n]]E[X[m]] = 0 if m 6= n

E[X2[n]] = 1 if m = n

= δ[m− n]

where the Kronecker delta function δ[i] equals 1 if i = 0 and 0 otherwise. Therefore,
the i.i.d. random process is wide-sense stationary and its power spectral density is given
by

SX(f) =
∞∑

k=−∞

RX [k]e−j2πfk

=
∞∑

k=−∞

δ[k]e−j2πfk

= 1.

(b) The mean of Y [n] is

E[Y [n]] =
∞∑
k=0

(1/2)k E[X[n− k]] =
∞∑
k=0

(1/2)k × 0 = 0.

The autocorrelation function of Y [n]n is

RY [n,m] = E[Y [n]Y [m]]

= E

[(
∞∑
k=0

(1/2)kX[n− k]

)(
∞∑
l=0

(1/2)lX[m− l]

)]

= E

[
∞∑
k=0

∞∑
l=0

(1/2)k+lX[n− k]X[m− l]

]

=
∞∑
k=0

∞∑
l=0

(1/2)k+lRX [m− n− l + k].

It can, hence, be seen from here that the process Y [n] is wide-sense stationary as
RY [n,m] only depends on the difference m − n. Using the result from (a), we can
simplify this expression as follows

RY [n,m] =
∞∑
k=0

∞∑
l=0

(1/2)k+lδ[m− n− l + k].

We first consider the case n ≥ m:

RY [n,m]
(∗)
=

∞∑
k=n−m

(1/2)k+(m−n+k)

= (1/2)m−n
∞∑

k=n−m

(1/2)2k

= (1/2)m−n
(1/2)2(n−m)

1− 1/4

=
4

3
(1/2)n−m,

where (∗) follows from the restriction that δ(m − n − l + k) is non-zero only if l =
m − n + k, and the fact that l is non-negative. In a similar manner we can conclude
RY [n,m] = 4

3
(1/2)m−n if m > n. The expression can be more simply written as

RY [n,m] =
4

3
(1/2)|n−m|,

or equivalently,

RY [k] =
4

3
(1/2)|k|.

2

The power spectral density of Y [n] is

SY (f) =
∞∑

k=−∞

RY [k]e−j2πfk

= (4/3)
∞∑

k=−∞

(1/2)|k|e−j2πfk

= 4/3

(
−1 +

∞∑
k=0

(1/2)ke−j2πfk +
0∑

k=−∞

(1/2)−ke−j2πfk

)

= 4/3

(
−1 +

∞∑
k=0

(1/2)ke−j2πfk +
∞∑
k=0

(1/2)kej2πfk

)

= 4/3

(
−1 +

1

1− e−j2πf

2

+
1

1− ej2πf

2

)

= 4/3

(
−1 +

2− (1/2)(ej2πf + e−j2πf)

1 + 1/4− (1/2)(ej2πf + e−j2πf)

)
= 4/3

(
−1 +

2− cos(2πf)

5/4− cos(2πf)

)
= 4/3

(
3/4

5/4− cos(2πf)

)
=

1

5/4− cos(2πf)
.

The power spectral density SY (f) is plotted in the below figure. Originally, the power
spectrum of the i.i.d. random process is flat. After passing through the low-pass filter,
the low-frequency part is preserved, whereas the high-frequency part is attenuated.

−0.4 −0.2 0 0.2 0.4

1

2

3

f

S
Y
(f
)

(c) The mean of Y [n] is

E[Y [n]] = E[X[n]] +
1

3
E[X[n− 1]] + E[Z[n]] = 0.

3

The autocorrelation function of Y [n] is

RY [n,m] = E[Y [n]Y [m]]

= E
[(
X[n] +

1

3
X[n− 1] + Z[n]

)(
X[m] +

1

3
X[m− 1] + Z[m]

)]
= RX [m− n] +

1

3
RX [m− n− 1] +

1

3
RX [m− n+ 1]

+
1

9
RX [m− n] +RZ [m− n],

where we used the independence of {X[n]}n and {Z[n]}n. Since E[Y [n]] is a constant
and RY [n,m] depends only on the difference m−n, the random process {Y [n]}n is also
wide-sense stationary. Using the result from (a), we can conclude

RY [k] =


10
9

+ σ2 if k = 0,
1
3

if k = ±1,

0 otherwise.

The power spectral density of {Y [n]}n is

SY (f) =
∞∑

k=−∞

RY [k]e−j2πfk

=
10

9
+ σ2 +

2

3
cos(2πf).

and

SY (z) =
∞∑

k=−∞

RY [k]z−k

=
10

9
+ σ2 +

1

3
(z + z−1).

Solution 2.

(a) For the ease of notation, each entry in the table has been divided by 2
√
E/3.

b0 b1 b2 Ĩ[0] Ĩ[1] Ĩ[2] Ĩ[3] (×2
√
E/3)

0 0 0 −2 −2 −2 −2
0 0 1 −2 −2 1 −1
0 1 0 −2 1 −1 −2
0 1 1 −2 1 2 −1
1 0 0 1 −1 −2 −2
1 0 1 1 −1 1 −1
1 1 0 1 2 −1 −2
1 1 1 1 2 2 −1

(b) The minimum distance of the constellation is 2
√

10E/3 and the average error proba-

4

bility can be upper bounded as

Pe < (M − 1)Q

(
dmin

2
√
N0/2

)

= (8− 1)Q

(
2
√

10E/3
2
√
N0/2

)

= 7Q

(√
20E
9N0

)
.

(c) We know that the zero forcing filter is essentially the inverse of the channel response.
Since the channel response (in z-domain) is

1 +
1

3
z−1

we find

DZF (z) =
3

3 + z−1
.

The power spectral density of the noise after filtering SṼ (z) is

SṼ (z) =
N0

2
DZF (z)DZF (z−1)

=
N0

2

9

10 + 3(z + z−1)

The power of the noise is

E[|Ṽ |2] =

∫ 1/2

−1/2
SṼ (ej2πf)df

=
N0

2

∫ 1/2

−1/2

9

10 + 6 cos(2πf)
df

=
9

16
N0

(d) The error probability of estimation between −
√
E and

√
E under the above noise is

Ps = Q

(√
16E
9N0

)
We cannot find the exact error probability of the estimation of all three symbols, so
instead we will use our result as a lower bound:

PeZF ≥ Ps

In (b) we found that the union bound on the error probability of ML estimation is

PeML ≤ 7Q

(√
20E
9N0

)
=: PU,ML

5

The plot below shows a comparison of these two bounds as a function of E
N0

; we can

see that once the E
N0

is larger than 9dB, our bounds indeed confirm that the ML is
better than the ZF. Can we gain some more insight into how much better it is? To
this end, let us consider the high-SNR case, i.e., when E

N0
becomes large. In this case,

the factor 7 in the ML-bound no longer matters. Now, if we remove the factor 7 from
the ML bound, we can gain further insight: let us denote the E

N0
in the ZF case by

SNRZF , and in the ML case by SNRML. Then, to make the two error probability
bounds the same, we have to pick SNRZF = 20

16
SNRML. That is, the ZF needs at least

10 log10(20/16) ≈ 0.9691dB more transmit power than the ML. In reality, we should
expect the ZF to perform strictly worse than the bound we have plotted, so the loss
should be expected to be more than a dB.

0 2 4 6 8 10 12 14

10−15

10−12

10−9

10−6

10−3

E/N0 [dB]

P
e

ML Upper Bound
ZF Lower Bound

Solution 3.

(a) Let’s use ′ and ′′ notation to split any length-2N vector to its first and second halves
(each of length N). Namely, x = [x′,x′′]T where x′ and x′′ are length-N vectors. Then
we can write the conditional pdf of the output Y given the input x as

f(y|x) =
1

(2π)N/2σN0
e
− 1

2σ20
‖y′−x′‖2 1

(2π)N/2σN1
e
− 1

2σ21
‖y′′−x′′‖2

.

By definition, the ML estimation of the sent message is

arg max
m

1

(2π)N/2σN0
e
− 1

2σ20
‖y′−x′m‖2 1

(2π)N/2σN1
e
− 1

2σ21
‖y′′−x′′m‖2

,

which is equivalent to

arg min
m

(
1

σ2
0

‖y′ − x′m‖2 +
1

σ2
1

‖y′′ − x′′m‖2
)
.

Finally, we can express it also as

arg min
m

(
‖y′ − x′m‖2 +

σ2
0

σ2
1

‖y′′ − x′′m‖2
)
.

This has a nice intuition: Instead of minimizing the squared distance, we minimize a
weighted version: On the first half of the vector, we take just squared distances, but on

the second half, we multiply the squared distance by
σ2
0

σ2
1
.

6

For the special case where σ2
0 = 2 and σ2

1 = 1, we can express the ML detector as

arg min
m

(
‖y′ − x′m‖2 + 2‖y′′ − x′′m‖2

)
, (1)

which is intuitive: Since the noise in the second part is only half as strong as in the first
part, the second part is much more reliable, and hence, should have more impact on our
decision. This is precisely what the formula says: The (squared) distance accumulated
in the second part is twice as important for the decision than the (squared) distance
accumulated in the first part.

(b) First, we simply draw the trellis. Recall that this is merely an efficient and convenient
way to “list” all possible noiseless received sequences.

(−1)

(+1)

(−1)

(+1)

n = 0 n = 1 n = 2 n = 3

−4

2

−4

2

−2

4

−4

2

−2

4

−4

2

−2

4

The whole point is now to find the one path through this trellis that is the ML path
with respect to the received sequence. If all noises have the same variance, this is simply
the one path that is closest (in Euclidean distance) to the received sequence. What to
do when the noise variances are not all the same? We use part (a), Equation (1), to
realize that for ML decoding, as we accumulate squared distances along the trellis, for
the first two time instants, we should count the squared distance only once, but for
times n = 2, 3, 4, 5, . . . we should count the squared distance twice (i.e., multiply it by
two). Hence, for the usual trellis search, this looks as follows:

(−1)

(+1)

(−1)

(+1)

n = 0 n = 1 n = 2 n = 3

Y [0] = 0 Y [1] = −1 Y [2] = 6 Y [3] = 1

16 16

4

4

9

9

1

25

5

25

2× 100

2× 16

2× 64

2× 4

153

33

2× 25

2

2× 9

2× 9

51

51

At this point, we observe that the optimal path must pass through the third node in
the top row (the vertex with label “33”) — the corresponding vertex in the bottom
row (with label “153”) is dead since it has no outgoing edges anymore! Note that if
this were not the case, I would have to continue drawing the trellis. But this allows us
to conclude that the ML path must include the segment from the root to the vertex
labeled “16”, then to “25”, then to “33”. Hence, the ML decision on the first three
bits is −1, 1, 1.

(c) Looking at the trellis, we can see that the minimum distance between any two paths
through the trellis is d2min = 36 (for example consider the transmitted signal (1, 1, 1) and

7

(1, 1,−1)) and the variance of the noise satisfies σ2 ≤ 2. Hence, the error probability
is upper bounded by Pe ≤ 7Q(dmin/(2

√
σ2)) ≤ 7Q(6/(2

√
2)) ≈ 0.1186.. However if

we consider the “terminated-trellis”, then the minimum distance is dmin =
√

62 + 22 =√
40, and the variance of the noise satisfies σ2 ≤ 2. Hence, the error probability is upper

bounded by Pe ≤ 7Q(dmin/(2
√
σ2)) ≤ 7Q(

√
40/(2

√
2)) = 7Q(

√
5) ≈ 0.0887. That is,

our decoded bits in part (b) are all correct with probability a little over 91 percent!

Solution 4.

(a) In the Z-domain, we could conveniently analyze what will happen to our channel:

U ′ZF (z) = D′ZF (z)U(z)

= D′ZF (z) (D(z)I(z) + V (z))

= (1− βz)(1− βz−1)I(z) + (1− αz)(1− αz−1)V (z)

= (1 + β2 − β(z + z−1))I(z) + (1 + α2 − α(z + z−1))V (z).

In the discrete-time domain, this would be

U ′ZF [n] = (1 + β2)I[n]− βI[n− 1]− βI[n+ 1] + V ′[n]

V ′[n] = (1 + α2)V [n]− αV [n− 1]− αV [n+ 1].

(b) Again we do our analysis in the Z-domain.

SV ′(z) = D′ZF (z)D′∗ZF (1/z∗)D(z)
N0

2

= (1− αz)(1− αz−1)(1− βz)(1− βz−1)N0

2
.

Recall that the power spectral density is the Z-transform of the autocorrelation. We
can therefore find the noise power by looking at the coefficients corresponding to z = 0
in the power spectral density:

E[V ′2] = RV ′ [0]

= (1 + α2 + 2αβ + β2 + α2β2)
N0

2
.

(c) We find our new noise term to be

G[n] = −βI[n− 1]− βI[n+ 1] + V ′[n].

Fortunately, I[n] is both i.i.d. and independent of V ′. This gives us the variance as
just a linear combination of all the individual variances.

E[G2] = 2β2E + (1 + α2 + 2αβ + β2 + α2β2)
N0

2
.

Then, we find Pe as

Pe ≈ Q

 (1 + β2)
√
E√

2β2E + (1 + α2 + 2αβ + β2 + α2β2)N0

2

 .

Notice how our pretend-Gaussian features the signal power E in its variance. In this
expression, both the signal power and the noise power scale linearly in the signal power
E . Hence in the high power region the error probability will not vanish. Recall that
a precise zero-forcing filter will be asymptotically optimal in high SNR, a mismatched
(even slightly!) zero-forcing filter will have deteriorated performance.

8

