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Solution 1.

(a) Let’s consider the case where n = 2 first, we have

Pr{Z = 0} = Pr{X1 ⊕X2 = 0} = Pr{X1 = 0, X2 = 0}+ Pr{X1 = 1, X2 = 1} =
1

2
,

where we used independence of X1 and X2. By induction, one could easily show that
for arbitrary n, we have

Pr{Z = 0} =
1

2
.

(i) For any x and z in {0, 1},

Pr(Z = z|X1 = x) = Pr{X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1 = z}
= Pr{X2 ⊕ · · · ⊕Xn = x⊕ z|X1 = x}
= Pr{X2 ⊕ · · · ⊕Xn = x⊕ z}

=
1

2
= Pr{Z = z}

where the third equality follows since Xis are independent and the fourth since
the parity check on any number of uniformly distributed binary RVs is, itself,
uniformly distributed in {0, 1} (as we showed above). We conclude that Z is
independent of X1

(ii) Similarly, for any x1, x2, . . . , xn−1 and z in {0, 1},

Pr{Z = z|X1 = x1, . . . , Xn−1 = xn−1}
= Pr{X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1 = x1, . . . , Xn−1 = xn−1}
= Pr{Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1|X1 = x1, . . . , Xn−1 = xn−1}
= Pr{Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1}

=
1

2
= Pr{Z = z}.

We,hence, conclude that Z is independent of X1, . . . , Xn−1.

(iii) No, Z is a deterministic function of X1, . . . , Xn, more precisely,

Pr{Z = z|X1 = x1, . . . , Xn = xn} = 1{z = x1 ⊕ . . . xn} 6= Pr{Z = z}.

(iv) Suppose Pr{Xi = 1} = 3
4
, we have

Pr{Z = 0} = Pr{X1 ⊕X2 = 0} = Pr{X1 = 0, X2 = 0}

+ Pr{X1 = 1, X2 = 1} =
9 + 1

16
=

5

8
,



but

Pr{Z = 0|X1 = 0} = Pr{X1 ⊕ X2 = 0|X1 = 0} = Pr{X2 = 0} =
1

4
6= 5

8

where we used the independence of X1 and X2. Thus Z is not independent of X1.

(b) Define the projection matrix

P :=
[
ψT

1 ψT
2 . . . ψT

n

]
,

that is, the n× n matrix whose columns are the basis vectors {ψ1, . . . ,ψn} (note that
in this problem the vectors are assumed to be row vectors). Then, W = ZP and,
hence, like Z, W is a zero-mean Gaussian vector. The covariance matrix of W is

ΣW = E[W TW ] = E[P TZTZP ] = P T · σ2I · P

since Z has independence components (hence covariance matrix ΣZ = σ2I). Fi-
nally since {ψ1, . . . ,ψn} is an orthonormal basis P TP = I (it is easy to see that
(P TP )i,j = ψiψ

T
j = 1{i = j}). Consequently, ΣW = σ2I which proves W has the

same distribution as Z.

Solution 2.

(a) Let D0, D1 be the MAP decision regions for hypotheses 0 and 1 when the apriori
probabilities are (π0, 1 − π0). Similarly, let D′0 and D′1 be the MAP decision regions
for hypotheses 0 and 1 when the apriori probabilities are (π′0, 1 − π′0) and D′′0 , D′′1 be
the MAP decision regions for hypotheses 0 and 1 when the apriori probabilities are
(π′′0 , 1− π′′0), where π′′0 = λπ0 + (1− λ)π′0. Thus

V (π0) = π0p0(D1) + (1− π0)p1(D0),

V (π′0) = π0p0(D
′
1) + (1− π0)p1(D′0),

V (π′′0) = π0p0(D
′′
1) + (1− π0)p1(D′′0),

where p0 (respectively p1) denotes the distribution of the observable conditioned on the
hypothesis 0 (resp. 1).

(b) Since the MAP rule minimizes the error probability, using any other decision regions
in any of the above will increase the probability of error. So,

V (π0) ≤ π0p0(D
′′
1) + (1− π0)p1(D′′0),

V (π′0) ≤ π′0p0(D
′′
1) + (1− π′0)p1(D′′0).

Multiplying the first by λ and the second by (1 − λ) and adding we get the desired
result:

λV (π0) + (1− λ)V (π′0) ≤ (λπ0 + (1− λ)π′0)p0(D
′′
1) + (1− (λπ0 + (1− λ)π′0))p1(D

′′
0)

= V (λπ0 + (1− λ)π′0)
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Solution 3.

(a) Let Pe(A) denote the error probability of the optimum detector for the signal set A.
Because of the additive nature of the channel, when the translated signal set A′ is
used at the transmitter, a receiver that adds mA(t) to the received signal and uses
the same decision rules as that for the signal set A will have the error probability
Pe(A). Consequently, Pe(A

′) ≤ Pe(A). (Note that Pe(A
′) is the error probability of

the optimum receiver for signal set A′ which we still don’t know if it is the one we just
described.) Swapping the roles of A and A′ we also get Pe(A) ≤ Pe(A

′). Therefore we
conclude that Pe(A

′) = Pe(A).

(b)

EA′ =
∑
j

pi‖aj(t)−mA(t)‖2

=
∑
j

pj‖aj(t)‖2 +
∑
j

pi‖mA(t)‖2 −
∑
j

2pj〈aj(t),mA(t)〉

(∗)
= EA + ‖mA(t)‖2 +

∑
j

2pj〈aj(t),mA(t)〉

= EA + ‖mA(t)‖2 − 2

〈∑
j

pjaj(t),mA(t)

〉
(†)
= EA + ‖mA(t)‖2 − 2〈mA(t),mA(t)〉
= EA − ‖mA(t)‖2,

where (∗) follows from the definition of average energy and that
∑

j pj = 1 and (†)
from the definition of the average signal mA(t). By part (a), adding a constant vector
(−m(A)) does not change the error probability, but it reduces the average transmitted
energy, so it is good.

Solution 4.

(a) From the definition of white Gaussian noise (Section 3.2) it follows that the random
variable Z =

∫
z(τ)h(T − τ) dt has zero mean and variance equal to N0/2

∫
h(T −

τ)2 dt = N0/2‖h(t)‖2.

(b) Using Cauchy–Schwarz inequality,

|(h ∗ s)(T )|2 =
∣∣∣∫ ∞
−∞

h(τ)s(T − τ)dτ
∣∣∣2

≤
∫ ∞
−∞

h2(τ)dτ

∫ ∞
−∞

s2(T − τ)dτ = ‖s(t)‖2 · ‖h(t)‖2

with equality if and only if h(t) = as(T − t) for some constant a. Consequently,

SNR =
|(h ∗ s)(T )|2

var
(
(h ∗ Z)(T )

) ≤ ‖h(t)‖2‖s(t)‖2

N0/2‖h(t)‖2
=
‖s(t)‖2

N0/2

with equality if and only if h(t) = as(T−t) for some constant a. Hence, we can conclude
that in order to maximize the SNR, we need to select the filter h(t) = as(T − t), which
is precisely the matched filter.
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Solution 5.

(a) Since the space spanned by {x1(t), x2(t)} is the same as the space spanned by {ϕ1(t), x2(t)},
we can obtain ϕ2(t) by applying the Gram–Schmidt procedure on {ϕ1(t), x2(t)}:

x2(t)− 〈x2(t), ϕ1(t)〉ϕ1(t) = x2(t)−
〈
x2(t),

x1(t)− x2(t)
‖x1(t)− x2(t)‖

〉
x1(t)− x2(t)
‖x1(t)− x2(t)‖

= x2(t)−
〈x1(t), x2(t)〉 − ‖x2(t)‖2

‖x1(t)− x2(t)‖2
· (x1(t)− x2(t))

= x2(t)−
〈x1(t), x2(t)〉 − ‖x2(t)‖2

‖x1(t)‖2 + ‖x2(t)‖2 − 2〈x1(t), x2(t)〉
· (x1(t)− x2(t))

= x2(t)−
〈x1(t), x2(t)〉 − E

2E − 2〈x1(t), x2(t)〉
· (x1(t)− x2(t))

= x2(t) +
1

2
(x1(t)− x2(t)) =

1

2
· (x1(t) + x2(t)).

Therefore,

ϕ2(t) =
x2(t)− 〈x2(t), ϕ1(t)〉ϕ1(t)

‖x2(t)− 〈x2(t), ϕ1(t)〉ϕ1(t)‖
=

x1(t) + x2(t)

‖x1(t) + x2(t)‖
.

(b) As explained in Section 3.3.1 of your lecture notes, the optimal receiver needs to com-
putes the sufficient statistic (Y1, Y2) where Y1 = 〈Y (t), ϕ1(t)〉 and Y2 = 〈Y (t), ϕ2(t)〉.
Since the two hypotheses are equally likely, the optimal decision (i.e., the MAP deci-
sion) reduces to the ML decision which is the minimum distance decoding, that is with
Y = (Y1, Y2), and xi =

(
〈xi(t), ψ1(t)〉, 〈xi(t), ψ2(t)〉

)
, i = 1, 2,

ĤML(Y = y) = arg min
i∈{1,2}

‖y − xi‖.

Note that Y1 and Y2 can be computed by passing the received signals through filters
with impulse response h1(t) and h2(t) and sampling their outputs at time t = T .

(c) Let Z1 = 〈Z(t), ϕ1(t)〉 and Z2 = 〈Z(t), ϕ2(t)〉. Z1 and Z2 are independent because
ϕ1(t) and ϕ2(t) are orthogonal. We have:

Y2 = 〈Y (t), ϕ2(t)〉 =

{
〈x1(t), x1(t)+x2(t)

‖x1(t)+x2(t)‖〉+ Z2 if x1 is sent,

〈x2(t), x1(t)+x2(t)
‖x1(t)+x2(t)‖〉+ Z2 if x2 is sent.

=

{
‖x1(t)‖2+〈x1(t),x2(t)〉
‖x1(t)+x2(t)‖ + Z2 if x1 is sent,

〈x2(t),x1(t)〉+‖x1(t)‖2
‖x1(t)+x2(t)‖ + Z2 if x2 is sent.

=

{
E+〈x1(t),x2(t)〉
‖x1(t)+x2(t)‖ + Z2 if x1 is sent,
E+〈x1(t),x2(t)〉
‖x1(t)+x2(t)‖ + Z2 if x2 is sent.

This shows that the distribution of Y2 is independent from the transmitted signal (and
from Y1). Therefore, Y2 can be thrown away. Hence, Y1 is sufficient statistics for the
hypothesis testing problem. Thus, the receiver only needs to compute Y1 for which the
matched filter h1(t) is sufficient.
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(d) We have:

Y1 = 〈Y (t), ϕ1(t)〉 =

{
〈x1(t), x1(t)−x2(t)

‖x1(t)−x2(t)‖〉+ Z1 if x1 is sent,

〈x2(t), x1(t)−x2(t)
‖x1(t)−x2(t)‖〉+ Z1 if x2 is sent.

=

{
‖x1(t)‖2−〈x1(t),x2(t)〉
‖x1(t)−x2(t)‖ + Z1 if x1 is sent,

〈x2(t),x1(t)〉−‖x1(t)‖2
‖x1(t)−x2(t)‖ + Z1 if x2 is sent.

=

{
E−〈x1(t),x2(t)〉
‖x1(t)−x2(t)‖ + Z1 if x1 is sent,
〈x1(t),x2(t)〉−E
‖x1(t)−x2(t)‖ + Z1 if x2 is sent.

Note that ‖x1(t)−x2(t)‖2 = ‖x1(t)‖2 +‖x2(t)‖2−2〈x1(t), x2(t)〉 = 2E −2〈x1(t), x2(t)〉.
Therefore,

Y1 =

{
‖x1(t)−x2(t)‖2
2‖x1(t)−x2(t)‖ + Z0 if 0 is sent,
−‖x1(t)−x2(t)‖2
2‖x1(t)−x2(t)‖ + Z0 if 1 is sent.

=

{
1
2
‖x1(t)− x2(t)‖+ Z0 if 0 is sent,

−1
2
‖x1(t)− x2(t)‖+ Z0 if 1 is sent.

Now since Z0 = 〈N,ϕ1(t)〉 ∼ N (0, N0

2
), the probability of error of the MAP decoder is

given by

Pe = Q

 1
2
‖x1(t)− x2(t)‖√

N0

2

 = Q

(
‖x1(t)− x2(t)‖√

2N0

)
.

The Cauchy–Schwarz inequality gives |〈x1(t), x2(t)〉| ≤ ‖x1(t)‖·‖x2(t)‖ = E . Therefore,
〈x1(t), x2(t)〉 ≥ −E . Hence,

‖x1(t)− x2(t)‖2 = 2E − 2〈x1(t), x2(t)〉 ≤ 2E + 2E = 4E .

We conclude that ‖x1(t) − x2(t)‖ ≤ 2
√
E . Therefore, the probability of error of the

MAP decoder is lower-bounded as follows:

Pe = Q

(
‖x1(t)− x2(t)‖√

2N0

)
(?)

≥ Q

(
2
√
E√

2N0

)
= Q

(√
2E
N0

)
.

Moreover, (?) becomes an equality when 〈x1(t), x2(t)〉 = −E = −‖x1(t)‖ · ‖x2(t)‖,
which is true if x2(t) = −x1(t).

Solution 6. Before we give the solution using the whitening filter approach studied here,
we point out that the ML detection based on a direct calculation of the likelihood ratio
works too. The conditional probability density function is

fY |X(y|xi) =
1

(2π)−1|Σ|−1/2
exp
{
−(y − xi)

TΣ−1(y − xi)

2

}
for i = 0, 1. As we will show, Σ can be written as Σ = CCH for some C. Hence the
log-likelihood ratio will look like

log-likelihood ratio = ln‖C−1x0 − C−1y‖2 − ln‖C−1x1 − C−1y‖2

We will make the decision according to the sign of the above quantity. It is easy to see that
this is equivalent to the decision rule we derive using the whitening filter approach below.
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(a) If we define C = ΦΛ1/2, where Λ1/2 is also a diagonal matrix with its diagonal elements
being square root of diagonal elements of Λ, then

CCH = ΦΛ1/2(Λ1/2)HΦH

= ΦΛΦH = Σ

The covariance matrix of C−1Z is

E[C−1Z(C−1Z)H ] = C−1 E[ZZH ](C−1)H

= C−1Σ(C−1)H

= C−1CCH(CH)−1 = I

(b) We process Y as

S = C−1Y = C−1x+ C−1Z

where C = ΦΛ1/2 as given in (a). This will make sure that equivalent noise C−1Z is
white. Our system can be equivalently written as

S = x̃+W

with W := C−1Z a Gaussian vector with covariance matrix I and x̃ chosen uniformly
in {C−1x0, C

−1x1}.
Now we have a standard AWGN vector problem with white Gaussian noise and as we
have seen in lecture notes, Section 3.4, and we know the ML detection rule is

ĤML(Y = y) = arg min
i∈{0,1}

‖C−1xi − C−1y‖

Due to the symmetry, the error probability is the same for either hypotheses. When
x1 is sent, Y = x1 +Z and according to the detection rule above, we make an error if

‖C−1x0 − C−1Y ‖2 ≤ ‖C−1x1 − C−1Y ‖2

which is equivalent to

〈C−1(x0 − x1), C
−1Y 〉 ≥ ‖C

−1x0‖2 − ‖C−1x1‖2

2

Following along the same lines as in the lecture notes, Section 3.4.2. (after some
algebra) we have

Pe = Q

(
‖C−1(x0 − x1)‖

2

)
(c) For Σ1, the noise is already white hence have C−1 = I, and the detection rule is

ĤML(Y = y) =

{
0 if ‖y − (1, 0)T‖ ≤ ‖y − (0,−1)T‖.
1 otherwise,

which can be simplified to

ĤML(Y = y) =

{
0 if y1 ≥ −y2
1 otherwise.
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(In the above y1 and y2 denote the first and second entry of y, respectively.) The
decision regions are shown in the left figure below and and the error probability is

Pe = Q(
√

2/2) ≈ 0.2398.

For the case with Σ2, it can be diagonalized as Σ2 = ΦΛΦH with

Φ =
1√
2

[
−1 1
1 1

]
Λ =

[
2/3 0
0 4/3

]
and the whitening filter is

C−1 = (ΦΛ1/2)−1 =

[
−
√
3
2

√
3
2√

3
8

√
3
8

]

and the ML detection rule in (b) can be simplified to

ĤML(Y = y) =

{
0 if y1 ≥ −y2,
1 otherwise.

The decision regions are shown in the right figure below, and the error probability is

Pe = Q

(√
3

8

)
≈ 0.2701

y1

y2

x0

x1

Decide for x0

Decide for x1

y1

y2

x0

x1

Decide for x0

Decide for x1

The dashed curves are the contour line of the probability density function of the noise.

Remark. Notice that the detection rule here is the same for both cases, but the colored
noise results a higher error probability. However, this is not always the case. If the
two signal points are x0 = (1, 0) and x1 = (−1, 0). Using exactly the same calculation
above we can find the following decision regions (the left figure shows the regions for
Σ1 and the right figure for Σ2). We can show that the error probability with white
noise is ≈ 0.159 and with colored noise is ≈ 0.125. In this case the error probability
with the colored noise is smaller than that with the white noise. The intuition can
already be seen from the contour line of the noise density in the plot.
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The dashed curves are the contour line of the probability density function of the noise.
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