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Solution 1.

(a) Let us first derive the mean:

mZ = E[AY ] = AE[Y ] = Am.

Then the transformed covariance follows as

CZ = E[(Z −mZ)(Z −mZ)H ]

= E[A(Y −m) (A(Y −m))H ]

= AE[(Y −m)(Y −m)H ]AH

= ACAH .

(b) First, if α or β is zero, then Z1 is clearly Gaussian. In the following, we assume α 6=
0 6= β. We show that Z1 = αY1 +βY2 is a Gaussian random variable by demonstrating
that the pdf of Z1 is of Gaussian form as well. We change variables from (Y1, Y2) to Z1

by integrating the joint-pdf (Y1, Y2) over R2 with an indicator-function that yields 1 if
αy1 + βy2 = z1 as follows
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where (a) follows by a change of variable u = αy1, w = βy2 and (b) follows from the
fact that Y1 and Y2 are independent.

Although we see the variables u and z1, this expression is a function only over z1. if
one would work this out, u would ultimately be removed completely by the integration.
At this point we cannot solve this integral, though. One trick to finding a closed form
solution is to rewrite difficult integrals to other integrals of whom we do happen to know
the closed form solution. To that end, let us group the two exponents and do some
rewriting. To be precise, we are going to extract some expression that only contains z1
and a residual over u that we do know how to solve.
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Now step (a) may be a bit hard to see. If you wish to see why this is true, try to write
out the expressions and work your way back. The trick is that we force the quadratic
expression on the right side and we alter the coefficient of z21 accordingly to make sure
the expression is still the same.

If we fill this back into our integral, we find
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If we play around with the constant at the front, we can find a -tedious, but- standard
Gaussian integral over the entire real line, which is known to integrate to 1, despite its
ugly offset mean!
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We can now see that Z1 does indeed follow a Gaussian distribution ∼ N (0, α2σ2
Y1

+
β2σ2

Y2
). In hindsight, observe that this distribution respects the laws for adding any two

independent random variables, namely E[αY1 +βY2] = αE[Y1] +β E[Y2] and var(αY1 +
βY2) = α2 var(Y1) + β2 var(Y2).

Remark: Another popular solution is to use moment-generating functions, which leads
to the same result.
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(c) When working with joint distributions, it is convenient to use vector notation. To be
precise, let us define [

Z1

Z2

]
=

[
αY1 + βY2
γY1 + δY2

]
=

[
α β
γ δ

] [
Y1
Y2

]
.

Since we do know the statistics of Y1 and Y2, we can quite easily find the mean and
covariance by simple linear algebra.
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For the covariance we use that Y1 and Y2 are independent and easily find
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If α = γ and β = δ, all entries in the covariance matrix are the same. In other words, Z1

and Z2 are maximally correlated. For independence, on the other hand, the covariance
matrix must be diagonal. Thus, the condition for independence is αγσ2

Y1
+ βδσ2

Y2
= 0.

(d) Since each covariance matrix is real symmetric, it has an eigenvalue decomposition as
follows:

C = QΛQT .

Here, Q consists of the orthonormal eigenvectors of C and Λ is a diagonal matrix of
the corresponding eigenvalues. If we turn this transformation around as

QTCQ = Λ,

we observe that we can thus diagonalize any real symmetric matrix by multiplying it
with its eigenvectors. Therefore, a matrix A whose rows are equal to the eigenvectors
of C will give us a new pair of Gaussians with a diagonal covariance matrix, which
means they are independent. The resulting statistics (σ2

Y1
, σ2

Y2
) will then simply be the

eigenvalues of C.
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Solution 2.

(a)

-4 -3 -2 -1 0 1 2 3 4
10

-4

10
-3

10
-2

10
-1

10
0

Laplace

Gaussian

R
1

R
1

R
2

R
2

R
3

R
3

R
4

R
4

R
5

R
5

(b) First, we have PY |H(y|1) = 1√
2

exp
(
−
√

2|y|
)

(Laplace) and PY |H(y|2) = 1√
2π

exp
(
−y2

2

)
(Gaussian). The figure above shows the two distributions and we can divide the real
line into five regions. Clearly, ĤML = 1 if y ∈ R1 ∪ R3 ∪ R5 and ĤML = 2 otherwise.
To be precise,

ĤML(Y = y) = arg max
h∈{1,2}

p(y|h) =

{
1 if p(y|1) ≥ p(y|2)

2 otherwise

=

{
1 if |y|2 − 2

√
2|y|+ ln π ≥ 0

2 otherwise

=

{
1 if

∣∣|y| − √2
∣∣ ≥ √2− ln π

2 otherwise

and a =
√

2, b =
√

2− lnπ.

(c) The error probability is

Pe = PH(1)

∫
||y|−√2|<√2−lnπ

PY |H(y|1) dy + PH(2)

∫
||y|−√2|≥√2−lnπ

PY |H(y|2) dy

= e−2 sinh
(√

4− 2 lnπ
)

+
1

2
−Q

(√
2−
√

2− lnπ
)

+Q
(√

2 +
√

2− ln π
)
≈ 0.43.
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Solution 3. We define
C(xi) = 2σ2 log Pr{X = xi}

It is easy to show that for the optimal decision maker (MAP) in Gaussian noise, the detector
finds xi so that

〈xi, xi〉 − 2〈y, xi〉 − C(xi)

is minimized.
We know the following for any j 6= i

〈xi, xi〉 − 2〈y1, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y1, xj〉 − C(xj) (1)

〈xi, xi〉 − 2〈y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y2, xj〉 − C(xj) (2)

Now let us consider the following,

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) = 〈xi, xi〉 − 2α〈y1, xi〉
− 2(1− α)〈y2, xi〉 − C(xi)

= α[〈xi, xi〉 − 2〈y1, xi〉 − C(xi)]+

(1− α)[〈xi, xi〉 − 2〈y2, xi〉 − C(xi)]

≤ α[〈xj, xj〉 − 2〈y1, xj〉 − C(xj)]+

(1− α)[〈xj, xj〉 − 2〈y2, xj〉 − C(xj)]

In the last step we used (1) and (2). We conclude

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈αy1 + (1− α)y2, xj〉 − C(xj)

for all j 6= i. Therefore, the decoder decodes αy1 + (1− α)y2 as xi.

Solution 4.

(a) Given the observation (y1, y2), the maximum likelihood receiver computes for each
hypothesis x

score(x) = PY1Y2|X(y1, y2|x) = PY1|X(y1|x)PY2|Y1X(y2|y1, x)

and chooses the x with the highest score. If PY2|Y1,X(y2|y1, x) = PY2|Y1(y2|y1), then

score(x) = PY1|X(y1|x)PY2|Y1(y2|y1)

Since the factor PY2|Y1(y2|y1) is common to the score of each x, the ranking of the x’s
will not change if it is based on the modified score

score′(x) = PY1|X(y1|x).

As score′ can be computed from y1 alone, the receiver does not need y2 to make its
decision.

(b)

(i) With Y1 = X+N1, Y2 = X+N2, Y3 = X+N1 +N2 with independent X, N1, N2

Pr{Y3 ≤ y3|Y1 = y1, X = x} = Pr{X +N1 +N2 ≤ y3|Y1 = y1, X = x}
= Pr{N2 ≤ y3 − y1|Y1 = y1, X = x}
= Pr{N2 ≤ y3 − y1} (∗)
= Pr{Y3 ≤ y3|Y1 = y1}

where (∗) follows from the independence ofN2 fromX andN1. Thus PY3|Y1,X(y3|y1, x) =
PY3|Y1(y3|y1) and we conclude that y3 is irrelevant given only y1.

5



(ii) Given Y1 and Y2, the knowledge of Y3 would let us determine X exactly as X =
Y1 + Y2 − Y3. Such exact determination is in general not possible from Y1 and Y2
alone, so Y3 is not irrelevant.

Under special circumstances the pair Y1, Y2 may determine X exactly, and Y3 is
irrelevant. Some examples:

(1) X is a constant;

(2) N1 = 0 with probability 1; or perhaps more interestingly,

(3) X takes values only in {0,1,2,3,4,5}, N1 takes only values in even integers and
N3 is always a multiple of 3, then, from Y1 we know (X mod 2), from Y2 we
know (X mod 3), so we can find (X mod 6) and thus determine X.

(c) The conditional cumulative distribution of Y2,

Pr{Y2 ≤ y2|Y1 = y1, X = x} = Pr{N2 ≤ y2 − x}

is a function that depends on the value of x. If Pr{Y2 ≤ y2|Y1 = y1, X = x} were equal
to Pr{Y2 ≤ y2|Y1 = y1} this would not have been the case. So, Y2 is not irrelevant.

(d) Observe that

logPY1Y2|X(y1, y2|x) = logPN1(y1 − x) + logPN2(y2 − x) = −[|y1 − x|+ |y2 − x|]− log 2

Thus the optimal decision rule is

ĤMAP(y1, y2) =


+1 |y1 − 1|+ |y2 − 1| < |y1 + 1|+ |y2 + 1|
−1 |y1 − 1|+ |y2 − 1| > |y1 + 1|+ |y2 + 1|
either |y1 − 1|+ |y2 − 1| = |y1 + 1|+ |y2 + 1|

=


+1 g(y1) + g(y2) > 0

−1 g(y1) + g(y2) < 0

either g(y1) + g(y2) = 0

with

g(y) = |y + 1| − |y − 1|

=


−2 y < −1

2y −1 ≤ y ≤ 1

+2 y > 1

The decision regions are shown in the fig-
ure with the gray zones indicating when
the decision is arbitrary.

y1

y2

(+1,+1)

(-1,-1)

Decide −1

Decide +1

(e) Since the rule agrees with the rule derived in part (d) it is optimum for the case of
equally likely messages. By symmetry, the probability of error can be computed as
Pr{error} = Pr{error|X = −1}, which is the same as

Pr{Y1 + Y2 ≥ 0|X = −1} = Pr{N1 +N2 ≥ 2}

6



Writing the above as ∫
PN1(n1) Pr{N2 > 2− n1} dn1,

observing that

Pr{N2 > x} =

{
exp(−x)/2 x ≥ 0

1− exp(x)/2 x < 0,

i and substituting PN1(x) exp(−|x|)/2, we can compute the probability of error (above
integration) as follows:∫ +2

−∞

e−|n1|

2

e−2+n1

2
dn1 +

∫ +∞

+2

e−|n1|

2

(
1− e2−n1

2

)
dn1 =

1

e2

(f) The MAP rule is given by decision = arg maxx∈{+1,−1} PY1,Y2|X(y1, y2|x) Pr{X = x},
which, with q = Pr{X = +1}, simplifies to

ĤMAP(y1, y2) =


+1 g(y1) + g(y2) > log((1− q)/q)
−1 g(y1) + g(y2) < log((1− q)/q)
either g(y1) + g(y2) = log((1− q)/q)

With q > 1/2, this has the effect of eliminating the gray zone, and shrinking the
decision region for X = −1 as shown.

y1

y2

(-1,-1)

(+1,+1)

Decide -1

Decide +1

Solution 5.

(a) The following figure shows an orthonormal basis.

t

ϕ1(t)

T
2

√
6/T

T
t

ϕ2(t)

T
2

√
6/T

T
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The different normalization ensures that their energies integrate to 1, namely∫ T

0

φ1(t)
2 dt =

∫ T/2

0

(
1
T
2

√
6

T
· t

)2

dt

=
24

T 3

∫ T/2

0

t2dt

=
24

T 3

[
1

3
t3
]T

2

0

= 1,

and ∫ T

0

φ2(t)
2 dt =

∫ T

T/2

2

T
dt

=
2

T

(
T − T

2

)
= 1.

(b) For k ∈ {1, 2, 3, 4}, using the orthonormal basis in (a), the signal point sk is given by(∫∞
−∞ sk(t)ϕ1(t) dt,

∫∞
−∞ sk(t)ϕ2(t) dt

)
. Thus, if b =

√
6/T , we must have

s1 = (1,
√

3), s2 = (−1,
√

3), s3 = (1,−
√

3), s4 = (−1,−
√

3),

and the signal space looks like

(1,
√
3)(−1,

√
3)

(1,−
√
3)(−1,−

√
3)

(c) The energy of each waveform is 4. For the first waveform, we can calculate:

E =

∫ ∞
−∞

s21(t) dt = 4.

Note that, because our basis is orthonormal, we can equivalently calculate the energy
as

E = ‖s1‖2 = 12 + (
√

3)2 = 4.

8


