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Solution 1.

(a) The density evolution function for the (l, r)-regular ensemble is

f(x, ε) = ε
(
1− (1− x)r−1

)l−1
As we have seen in the class, we can plot the fixed points using the parametric expres-
sion
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x

f(x)
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x

(1− (1− x)r−1)l−1
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(3, 6)-regular ensemble
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ε∗BP ≈ 0.42944.

(4, 8)-regular ensemble
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ε∗BP ≈ 0.3834.

(5, 10)-regular ensemble
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ε∗BP ≈ 0.3416.

(b)

(i) The design rate of the code is given by

R = 1−
∫ 1

0
ρ(x) dx∫ 1

0
λ(x) dx

=
177

352
≈ 0.503



(ii) Here is the plot of fixed points obtained by plotting

ε(x) =
x

λ (1− ρ(1− x))
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which shows the threshold is
ε∗BP ≈ 0.47524

We can see that this is indeed higher than the best threshold for the previous
regular ensembles (which was ≈ 0.429 for the (3, 6)-regular ensemble).

Solution 2.

(a) Recall that if W is a BEC with erasure probability ε, W s, s ∈ {−,+} is BEC with
erasure probability Ts(ε) where

T−(ε) = 2ε− ε2 (1)

T+(ε) = ε2 (2)

Since both of the above functions are increasing in ε, ε1 ≤ ε2 implies

Ts(ε1) ≤ Ts(ε2) ∀s ∈ {−,+}

which proves the claim.

(b) The claim follows by induction. Fix a sign sequence (s1, . . . , sn) and define two se-
quences a` and b` as

a0 = ε1 b0 = ε2

a` = Ts`(a`−1) b` = Ts`(b`−1)

Obviously an (respectively bn) is the erasure probability of W s1···sn
1 (resp. W s1···sn

2 ).
Moreover a0 ≤ b0 by assumption and a`−1 ≤ b`−1 implies a` ≤ b` due to (a). Thus,
an ≤ bn which means W s1···sn

1 � W s1···sn
2 .

(c) While the polar code that is being used for communication over the better channel
(with erasure probability ε′ < ε) is not the optimal one, we know from our analysis
that it performs at least as well as what we would have expected if the channel indeed
had erasure probability ε (and perhaps even better because we have strict inequality
and T− and T+ are strictly increasing).
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Solution 3. Let us focus on the worst channel. Fix any sign sequence s1, . . . , sn with m
minuses and n−m pluses and assume this sequence contains at least one (+,−) pair—i.e.,
a plus followed by a minus. We claim that by swapping those two signs we get a worst
channel. (Hence, the worst channel is indeed the one indexed by a sequence that contains
no (+,−) pair — which is exactly the one claimed to index the worst channel.) Suppose
t1, . . . , tn is the sequence obtained by changing one of (+,−) pairs in s1, . . . , sn to (−,+).
More precisely, assume sj = + and sj+1 = − and we let

t` = s`, ` = 1, 2, . . . , j − 1, j + 2, . . . , n

tj = sj+1 = −
tj+1 = sj = +.

(It is obvious that the t sequence also has m minuses and n−m pluses.)
Define two sequences a`, b` as

a0 = b0 = ε

a` = Ts`(a`−1)

b` = Tt`(b`−1)

(where T− and T+ are defined in Equations (1) and (2) previously). Obviously, an is the
erasure probability of W s1...sn and bn is the erasure probability of W t1...tn .

By construction, we, moreover, have that

a` = b`, ` = 1, . . . , `− 1

Now,
aj = T+(aj−1) = a2j−1, aj+1 = T−(aj) = 2aj − a2j = 2a2j−1 − a4j−1

while

bj = T−(bj−1) = 2bj−1 − b2j−1, bj+1 = T+(bj) = b2j =
(
2bj−1 − b2j−1

)2
=
(
2aj−1 − a2j−1

)2
It is easy to check that

(2α2 − α4) ≤
(
2α− α2

)2
, ∀α ∈ [0, 1]

thus,
aj+1 ≤ bj+1

Moreover since s` = t` for ` = j + 2, . . . , n, the monotonicity of T− and T+ implies

a` ≤ b`, ` = j + 2, . . . , n.

which, in particular, shows an ≤ bn. Thus, W s1...sn � W t1...tn .
The claim on the best channels follows exactly in the same way.

Solution 4.

(a) If any of the synthetic channels erase, a block-error event happens. Therefore, the
block-error probability of the polar code which uses channels with indices in An is
lower-bounded by the erasure probability of any of those channels — in particular the
one with the highest erasure probability.

(b)
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(i) Let

L−(x) := x

L+(x) := x2.

Then,

a` := Ts`(a`−1)

b` := Ls`(b`−1)

where T− and T+ are defined in (1) and (2) respectively. Similarly to T±, both
transformations L± are monotone. Moreover, L+(x) = T+(x) while L−(x) ≤
T−(x). Therefore we can prove the claim by induction as follows: Clearly a0 ≥ b0
(in fact here we have equality). Furthermore if a` ≥ b`, then,

a`+1 = Ts`+1
(a`) ≥ Ls`+1

(a`) ≥ Ls`+1
(b`) = b`+1.

(ii) This is obvious by construction:

log(b`) = 21{s`=+} log(b`−1) = 2
∑n
`=1 1{s`=+} log(b0)

which shows
log(b`) = 2p log(ε) ⇐⇒ b` = ε(2

p)

(iii) Since bn ≤ an, if an ≤ 2−2
βn

, then we must have

ε(2
p) ≤ 2−2

βn ⇐⇒ 2p log(ε) ≤ −2βn

Since log(ε) < 0 (as ε < 1) the above implies

2p ≥ 2βn

log(1/ε)
⇐⇒ p ≥ βn− log (log(1/ε))

(c)

(i) The expansion of [z + (1− z)]n is

1 = [z + (1− z)]n =
n∑
i=0

(
n

i

)
zi(1− z)n−i

Since all the terms in the summation are positive it can be lower-bounded by
keeping any of them, say the jth term:

1 ≥
(
n

j

)
zj(1− z)n−j

which proves the claim.

(ii) Taking z = j/n in (i) we have(
n

j

)
≤
(
j

n

)−j (
n− j
n

)−(n−j)
= 2−n[

j
n
log( jn)+n−j

n
log(n−jn )] = 2nh2(j/n)
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(iii) Since p ≥ n/2,

n∑
j=p

(
n

j

)
≤

n∑
j=p

(
n

p

)
≤ (n− p+ 1)

(
n

p

)
≤ n

(
n

p

)
≤ n2nh2(p/n)

(iv) Using (iii), the fraction of such sequences is upper-bounded by

n2nh2(p/n)

2n
≤ n2−n[1−h2(β−c(ε)/n)]

where the inequality follows by lower-bounding p/n ≥ β − c(ε)/n. Since β > 1
2

for large enough n, β − c(ε)/n ≥ 1
2
, which shows the exponent of the right-hand-

side of the above is strictly positive (since h2(β − c(ε)/n) < 1). Therefore, the
right-hand-side of the above goes to 0 exponentially fast as n→∞.

(d) In (b) we showed that for a synthetic channel to have an erasure probability decaying
faster than 2−N

β
, its ‘index’ must have at least βn pluses. In particular if β > 1

2
,

its index must more than 1
2
n pluses. As we showed in (c), the fraction of such sign

sequences vanishes as n→∞.

(e) If the block-error probability were to decay faster than 2−
√
N , that is 2−N

β
, β > 1

2
, then

because of (a) the erasure probability of all synthetic channels used for the transmission
of information bits would have to decay as fast as 2−N

β
, β > 1

2
. This means An must

be a subset of a vanishing fraction of channels because of (d). This requires the code
rate to decay to 0.
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