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Solution 1.

(a) That C⊥ is a linear subspace of {0, 1}n is obvious: For all y1 and y2 in C⊥, G(y1+y2)
T =

GyT
1 +GyT

2 = 0. Therefore, y1 + y2 is in C⊥.

Moreover since G has rank k (otherwise the dimension of the space it spans will be
smaller than k), the rank–nullity theorem tells that its null space (which is exactly C⊥)
has dimension n− k.

(b) Since C⊥ is a binary linear block code of dimension k it can be written as C⊥ = {x ∈
{0, 1}n : x = uH : u ∈ {0, 1}n−k}

(c) Pick x ∈ C. Then ∀y ∈ C⊥, xyT = uGyT = u0T = 0. In particular, since every row
of of H is a codeword of CT , xHT = 0 which implies HxT = 0. This shows

C ⊂ {x ∈ {0, 1}n : HxT = 0}.

The same reasoning as (a) shows that the right-hand-side of the above, which is the
null space of H, has dimension k thus 2k elements. C has also 2k elements. Thus we
conclude that C = {x ∈ {0, 1}n : HxT = 0}.

Solution 2. Let S0 be the set of codewords at Hamming distance d from x0 and S1

be the set of codewords at Hamming distance d from x1. For each y in S0, note that
x1 + y is at distance d from x1, and thus {x1 + y : y ∈ S0} ⊂ S1. Similarly, since for
every y ∈ S1, x1 + y has d ones, it is at distance d from x0 (the all-zero codeword) thus,
{x1 + y : y ∈ S1} ⊂ S0. These two relationships yield |S0| ≤ |S1| and |S1| ≤ |S0|, leading
to the conclusion that |S0| = |S1|.

Solution 3.

(a) Note first that the sum of two even-weight codewords is of even weight, the sum of two
odd-weight codewords is of even weight and the sum of an odd-weight codeword with
an even-weight codeword is of odd weight.

If the code contains no odd-weight codeword then we are done. Otherwise let x be an
odd-weight codeword. Then the mapping y 7→ x+y is a bijection between even-weight
and odd-weight codewords, and we conclude that there must be an equal number of
odd-weight and even-weight codewords.

(b) The same proof above applies: either all codewords have a zero at the ith digit, or there
is a codeword x with has a 1 in its ith digit. The mapping y 7→ x+ y gives a bijection
between codewords who have a zero at the ith digit and codewords which have a 1 at
the ith digit.

In the first case, when all codewords have a zero at the ith digit, one can improve the
code by simply deleting the ith digit from each codeword: no matter what the message
is, the same symbol would have been transmitted, giving no additional information.



(c) To find the average number of 1’s per codewords, one would find the total number of
1’s in all codewords, and divide this sum by the number of codewords. Suppose there
are M codewords. Arrange the codewords in rows, and count the total number of 1’s
by going over columns one by one. Since each column contains at most M/2 ones, and
there are n columns, the total number of 1’s is less than or equal to Mn/2. Dividing
by M we see that the average number of 1’s per codeword is at most n/2.

(d) Since the code is proper we know that there is no position i ∈ {1, 2 . . . , n} for which
xm,i = 0 for all m. (Recall that xm,i denotes the ith digit of the mth codeword.) Thus,
by (b) we know that for every i, half of xm,i are zero and half are one. Consequently,
if a codeword is chosen uniformly at random then xm,i will indeed be equally probable
to be 0 or 1.

Solution 4.

(a) Since dH(x,y) = wH(x− y) we always have

dmin(C) = min
x,y∈C
x6=y

wH(x− y).

For a linear code x,y ∈ C imply x− y ∈ C. Thus,

dmin(C) = min
x∈C
x6=0

wH(x).

(b) Let us do the following assignment: To each codeword, we assign all binary sequences
that are no more than b(dmin− 1)/2c bit flips away. With this assignment, each binary
string of length n will be assigned to exactly one of the codewords since the Hamming
distance of any two codewords is at least dmin. Note that some binary strings may not
be assigned at all because they are too far away from any codeword. Therefore, to each
codeword we assign in total

b(dmin−1)/2c∑
i=0

(
n

i

)
different binary strings. Since there are M codewords in total, we have

M

b(dmin−1)/2c∑
i=0

(
n

i

)
different binary strings that are accounted for. Finally, since there are only 2n different
binary strings of length n, we must have

M

b(dmin−1)/2c∑
i=0

(
n

i

)
≤ 2n.

(c) We can weaken the lower bound of (a) as(
n

b(dmin − 1)/2

)
≤ 2n

M
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Taking the logarithm of both sides of the above and dividing by n, we have

1

n
log2

(
n

b(dmin − 1)/2c

)
≤ n− log(M)

n

Using the Stirling approximation (given in the hint) and the fact that lim
n→∞

b(dmin − 1)/2c
n

=

δ/2 the result follows.

Solution 5. Consider the code described by the following Tanner graph:
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The parity check-matrix of the code is

H =



0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0
1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1
0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0


The set of variable nodes S = {7, 11, 16} forms a stopping set: all check nodes which are
connected to S are connected to S at least twice.

Suppose the channel erases exactly the positions in S, namely the seventh, the eleventh,
and the sixteenth bits. Then BP decoder cannot recover those positions because each of
the check nodes 1 2, and 6 receives an erasure message from at least two variable nodes.

On the other side, to recover the values of x7, x11, and x16, the MAP decoder needs to
solve the following system of linear equations:

H{7,11,16}

 x7x11
x16

 = H∼{7,11,16}y
T
∼{7,11,16}.

In the above H{7,11,16} denotes the 10 × 3 sub-matrix of H corresponding to its 7th, 11th,
and 16th columns, and H∼{7,11,16} denotes its 10 × 17 sub-matrix obtained by deleting the
7th, 11th, and 16th columns. Similarly y∼{7,11,16} denotes the row vector of received bits
excluding y7, y11, and y16 (which are actually erasures).
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Note that x7, x11, and x16 of the sent codeword is a solution to the above system (since
y∼{7,11,16} = x∼{7,11,16} and HxT = 0). Therefore, the only ‘bad’ thing that may happen
is that the above would be under-determined system of equations having more than one
solution. We can check that this is not the case. Indeed,

H{7,11,16} =



0 1 1
1 1 1
1 0 1
0 0 0
0 0 0
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0


is a full-rank matrix: its first three rows are linearly independent (in GF(2)).
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