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Solution 1.

(a) Let us start from the definition of DTFT:

X(f) =
∞∑

n=−∞

x[n]e−j2πfn

(∗)
=

∞∑
n=−∞

x∗[−n]ej2πf(−n)

(†)
=

∞∑
m=−∞

x∗[m]ej2πm

=
∞∑

m=−∞

(
x[m]e−j2πfm

)∗
= X(f)∗,

where (∗) follows from x[n] = x∗[−n] and (†) follows by a change of variable m = −n.
Since X(f) = X(f)∗, we must have that Xim(f) = 0 and X(f) is real-valued.

Similarly, let us start from the definition of Z-transform:

X(z) =
∞∑

n=−∞

x[n]z−n

(∗)
=

∞∑
n=−∞

x∗[−n]z−n

(†)
=

∞∑
m=−∞

x∗[m]zm

(#)
=

∞∑
m=−∞

(x[m] (z∗)m)
∗

=

(
∞∑

m=−∞

x[m] (1/z∗)−m
)∗

= X∗ (1/z∗) ,

where (∗) follows from x[n] = x[−n], (†) follows by a change of variable m = −n and
(#) follows from (ab)∗ = a∗b∗.



(b) The Fourier transform of (x ∗ y)[n] is given by

F{x ∗ y}(f) =
∞∑

n=−∞

(x ∗ y)[n]e−j2πfn

=
∞∑

n=−∞

∞∑
k=−∞

x[k]y[n− k]e−j2πfke−j2πf(n−k)

=
∞∑

k=−∞

x[k]e−j2πfk

(
∞∑

n=−∞

y[n− k]e−j2πf(n−k)

)
(∗)
=

∞∑
k=−∞

x[k]e−j2πfk

(
∞−k∑

m=−∞−k

y[m]e−j2πfm

)
= X(f)Y (f),

where (∗) follows by a change of variable m = n− k.

(c) The Fourier transform of y[n] = (x ∗ x̄)[n] is given by

F{x ∗ x̄}(f) =
∞∑

n=−∞

(x ∗ x̄)[n]e−j2πfn

=
∞∑

n=−∞

∞∑
k=−∞

x[k]x̄[n− k]e−j2πfke−j2πf(n−k)

(∗)
=

∞∑
k=−∞

x[k]e−j2πfk

(
∞∑

n=−∞

x∗[k − n]e−j2πf(n−k)

)
(†)
=

∞∑
k=−∞

x[k]e−j2πfk

(
∞−k∑

m=−∞−k

x∗[m]ej2πfm

)

=
∞∑

k=−∞

x[k]e−j2πfk

(
∞∑

m=−∞

x[m]e−j2πfm

)∗
= X(f)X∗(f)

= |X(f)|2,

where (∗) follows from the definition of x̄[n] and (†) follows by a change of variable
m = k − n.

You can also use the result in (b): first you need to find out that the Fourier transform
of x∗[−n] is given by X∗(f). Then the result in (b) shows that the Fourier transform
of y[n] is just the product X(f)X∗(f) = |X(f)|2.

(d) The DFT of x[n] can be rewritten as

X[k] =
1√
N

N−1∑
n=0

x[n]e−j
2π
N
kn

=
[

1√
N
e−j

2π
N
k×0 1√

N
e−j

2π
N
k×1 · · · 1√

N
e−j

2π
N
k(N−1)

]
x[0]
x[1]

...
x[N − 1]

 .
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Thus, if we let
[

1√
N
e−j

2π
N
k×0 1√

N
e−j

2π
N
k×1 · · · 1√

N
e−j

2π
N
k(N−1)

]
be the (k + 1)-th row

of F , for k = 0, 1, · · · , N − 1, then the resulting F is the desired Fourier matrix with
the (k + 1, n+ 1)-entry given by

F [k + 1, n+ 1] =
1√
N
e−j

2π
N
kn, k, n = 0, 1, · · · , N − 1.

Note that we also have

X = Fx,

where X = (X[0], X[1], · · · , X[N − 1])T and x = (x[0], x[1], · · · , x[N − 1])T . Thus, the
DFT is a linear transform.

To prove F−1 = FH , we show that FFH = I: (note that AB = I implies BA = I)

N−1∑
`=0

F [k + 1, `+ 1]FH [`+ 1, n+ 1] =
1

N

N−1∑
`=0

e−j
2π
N
k`ej

2π
N
`n

=
1

N

N−1∑
`=0

ej
2π
N
`(n−k)

=


1

N

N−1∑
`=0

1 = 1 if k = n,

1
N

1−ej2π(k−n)

1−ej
2π
N

(k−n) = 0 otherwise.

The DFT matrices of dimension 2, 3 and 4 are the followings:

F2 =
1√
2

[
1 1
1 −1

]
,

F3 =
1√
3

1 1 1

1 −1
2
− j

√
3
2
−1

2
+ j

√
3
2

1 −1
2

+ j
√
3
2
−1

2
− j

√
3
2

 ,

F4 =
1

2


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

 .
Solution 2.

(a)

E[aX + bY ] =
∑
x

∑
y

(ax+ by)pXY (x, y)

=
∑
x

ax
∑
y

pXY (x, y) +
∑
y

by
∑
x

pXY (x, y)

= a
∑
x

x pX(x) + b
∑
y

y pY (y)

= aE[X] + bE[Y ].
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(b) If X and Y are independent, we have pXY (x, y) = pX(x)pY (y), then

E[X · Y ] =
∑
x

∑
x

x · y · pXY (x, y)

=
∑
x

∑
y

x · y · pX(x) · pY (y)

=
∑
x

x · pX(x)
∑
y

y · pY (y)

= E[X] · E[Y ]

(c) For the first example, suppose Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = 1
2
, and

Pr(X = 0, Y = 0) = Pr(X = 1, Y = 1) = 0. X, Y are dependent, and we have
E[X · Y ] = 0 while E[X]E[Y ] = 1

4

For the second example, suppose Pr(X = −1, Y = 0) = Pr(X = 0, Y = 1) = Pr(X =
1, Y = 0) = 1

3
. X, Y are dependent. Obviously we have E[X · Y ] = 0, and furthermore

E[X] = 0, hence E[X]E[Y ] = 0.

(d) If X and Y are independent, we have pXY (x, y) = pX(x)pY (y), then

E[(X − E[X])(Y − E[Y ])] =
∑
x

∑
y

(x− E[X])(y − E[Y ]) pXY (x, y)

=
∑
x

∑
y

(x− E[X])(y − E[Y ]) pX(x)pY (y)

=
∑
x

(x− E[X]) pX(x)
∑
y

(y − E[Y ]) pY (y)

= (E[X]− E[X])(E[Y ]− E[Y ]) = 0.

Thus, X and Y are uncorrelated.

(e) First, we have

cov(X, Y ) = E [(X − E[X])(Y − E[Y ])]

= E [XY −X E[Y ]− E[X]Y + E[X]E[Y ]]

= E[X · Y ]− E[X] · E[Y ].

Thus, cov(X, Y ) = 0 if and only if E[X · Y ] = E[X] · E[Y ].

Then,

σ2
aX+bY = E

[
(aX + bY − E[aX + bY ])2

]
= E[(aX + bY )2]− (E[aX + bY ])2

= a2 E[X2] + 2abE[X · Y ] + b2 E[Y 2]− a2 E[X]2 − 2abE[X]E[Y ]− b2 E[Y ]2

= a2(E[X2]− E[X]2) + b2(E[Y 2]− E[Y ]2)

= a2σ2
X + b2σ2

Y .

We remark that since the independence of X and Y implies cov(X, Y ) = 0, we also
have σ2

aX+bY = a2σ2
X + b2σ2

Y if X and Y are independent.
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Solution 3.

(a) ∑
n>0

Pr{N ≥ n} =
∞∑
n=1

∞∑
m=n

Pr{N = m}

=
∞∑
m=1

m∑
n=1

Pr{N = m}

=
∞∑
m=1

mPr{N = m}

= E[N ].

(b) ∫ ∞
0

Pr{X ≥ a} da =

∫ ∞
0

∫ ∞
a

fX(t) dt da

=

∫ ∞
0

∫ t

0

fX(t) da dt

=

∫ ∞
0

tfX(t) dt

= E[X].

(c) The main point is to note that G(t) = Pr{X ≥ t} is a non-increasing function of t. So
for any fixed value of a > 0, the rectangle between point (0, 0) and (a,G(a)) lies below
the function G(t). In conclusion, it follows from the discussion above that

aG(a) =

∫ a

0

G(a) dt ≤
∫ a

0

G(t) dt ≤
∫ ∞
0

G(t) dt,

which, using (b), means
aPr{X ≥ a} ≤ E[X].

(d) Define X ≥ 0 as
X := (Y − E[Y ])2.

Using Markov inequality (part (c)) we have

Pr{(Y − E[Y ])2 ≥ a} = Pr{X ≥ a} ≤ E[X]

a
=
σ2
Y

a
.

Setting b =
√
a in the above we get

Pr{|Y − E[Y ]| ≥ b} = Pr{(Y − E[Y ])2 ≥ a} ≤ σ2
Y

b2
.

(e) Fix s ≥ 0, then we have

Pr{Z ≥ b} ≤ Pr{s(Z − b) ≥ 0}
= Pr{es(Z−b) ≥ e0}
(∗)
≤ E

[
es(Z−b)

]
,

where (∗) follows from the Markov inequality.
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Solution 4.

(a) Pr{X1 ≤ X2} = 1
2
. We know because of independence we have, fX1,X2(x1, x2) =

fX1(x1)fX2(x2), and we want to find the probability of x1 being minimum of two.
This event partitions the probability space into two equal subsets, the other one is x2
being the minimum of the two. The only problem is the boundary line x1 = x2, which
we assume is a part of the first sub-set, but because X is a continuous random variable
the line x1 = x2 has zero probability mass and because fX1(x1)fX2(x2) is symmetric
with respect to the line x1 = x2, we conclude that the event min(x1, x2) = x1 partitions
the whole probability space into two equally probable regions.

(b) Pr{X1 ≤ X2;X1 ≤ X3} = 1
3
. We follow the exact same argument as the part (a), this

time the probability space is partitioned into three equally probable subsets, in each
of subsets one of the three random variable is the minimum.

(c) We know that Pr{N ≥ 1} = 1 (trivially) and for n ≥ 2,

Pr{N ≥ n} = Pr{X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1} =
1

n− 1

due to the same reasoning as in parts (a) and (b).

(d) Using part (a) of Problem 3,

E[N ] =
∑
n≥1

Pr{N ≥ n} = 1 +
∑
n≥2

Pr{N ≥ n} = 1 +
∑
n≥2

1

n− 1
=∞

(since the series,
∑n

j=1
1
n

is divergent).

(e) The symmetry of fX1(x1)fX2(x2) still holds because of independence bu in the discrete
case it is possible to put some probability mass on the line x1 = x2. Therefore, in the
discrete case the event {X1 ≤ X2} does not partition the whole probability space into
two equally probable subspaces. However, we can still conclude that Pr{X1 < X2} =
Pr{X2 < X1} (because of the symmetry). On the other hand, Pr{X1 < X2}+Pr{X1 =
X2}+Pr{X1 > X2} = 1. Consequently, we conclude that Pr{X1 ≤ X2} ≥ 1

2
. Similarly,

we can conclude that

Pr{X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1} ≥
1

n− 1
.

Following the steps in part (d), we can show that

E[N ] ≥ 1 +
∑
n≥2

1

n− 1
=∞.
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