
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Solution 1.

(a) Note that ∀m,n,

1

N

N−1∑
k=0

ej
2π
N
k(n−m) =

1 if n = m

1

N

1− ej2π(n−m)

1− ej 2πN (n−m)
, if n 6= m,

= 1{n = m}. (?)

Consequently, ∀m,

F{F−1{X}}[m] =
1√
N

N−1∑
k=0

F−1{X}[k]e−j
2π
N
km

=
1√
N

N−1∑
k=0

(
1√
N

N−1∑
n=0

X[n]ej
2π
N
nk

)
e−j

2π
N
km

=
N−1∑
n=0

X[n]

(
1

N

n−1∑
k=0

e−j
2π
N
kmej

2π
N
kn

)
(?)
=

N−1∑
n=0

X[n]1{n = m}

= X[m].

(b)

F{x~ y}[n] =
1√
N

N−1∑
k=0

(x~ y)[k]e−j
2π
N
kn

=
1√
N

N−1∑
k=0

N−1∑
m=0

x[m]y[(k −m) mod N ]e−j
2π
N
kn

=
1√
N

N−1∑
k=0

N−1∑
m=0

x[m]e−j
2π
N
mn · y[(k −m) mod N ]e−j

2π
N

(k−m)n

(a)
=

1√
N

N−1∑
k=0

N−1∑
m=0

x[m]e−j
2π
N
mn · y[(k −m) mod N ]e−j

2π
N

[(k−m) mod N ]n

(b)
=

1√
N

N−1∑
m=0

x[m]e−j
2π
N
mn ·

N−1∑
`=0

y[`]e−j
2π
N
`n.

=
√
NX[n]Y [n].

In the above (a) follows since e−j
2π
N

(k−m) = e−j
2π
N

[(k−m) mod N ] and (b) by setting ` :=
(k −m) mod N .



(c)

Y [n] =
1√
N

N−1∑
k=0

y[k]e−j
2π
N
kn

=
1√
N

N−1∑
k=0

x[(k +m) mod N ]e−j
2π
N
kn

=
1√
N

N−1∑
k=0

x[(k +m) mod N ]e−j
2π
N

(k+m)nej
2π
N
mn

(a)
= ej

2π
N
mn 1√

N

N−1∑
k=0

x[(k +m) mod N ]e−j
2π
N

[(k+m) mod N ]n

(b)
= ej

2π
N
mn 1√

N

N−1∑
`=0

x[`]e−j
2π
N
`n

= ej
2π
N
mnX[n].

In the above (a) follows since e−j
2π
N

(k+m) = e−j
2π
N

[(k+m) mod N ] and (b) by setting ` :=
(k +m) mod N .

(d) Using the identity (?) that we proved in part (a),
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Solution 2.

(a) No worries! Using Bayes’ rule, the chance that you have Dysania given the positive
test outcome is

P{Dysania | test positive} =
P{test positive | Dysania}P{Dysania}

P{test positive}

=
0.99 · 10−6

(1− 10−6) · 0.01 + 10−6 · 0.99
∼ 10−4.

(b) A random variable is a mapping from the space of outcomes to the reals!
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(c)
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The chance that a random variable X drawn from this distribution takes on a value
larger than 4 is equal to

Q(5/
√

3).

For large x the dominant behavior of the function Q(x) is

e−x
2/2.

(d) Pr{X ≥ α} ≤ E[X]/α.

(e) By linearity of expectation the answer is simply the sum of the means, hence −2, no
real computation required.

(f) The upper bound is the standard union bound, the lower bound follows by the exclusion-
inclusion principle.

Solution 3.

(a) The optimal decision rule is the MAP rule, namely,

X̂MAP(y) = arg max
x∈X

Pr{X = x|Y = y}

= arg max
x∈X

fY |X(y|x) Pr{X = x},

where X is the space of hypotheses (in our case X = {x1, x2}). Since the two hypotheses
{X = x1} and {X = x2} are equally probable, the MAP decision rule reduces to

X̂MAP(y) = arg max
x∈X

fY |X(y|x).

Conditioned on {X = x}, Y is a Gaussian random variable with mean x and variance
σ2, therefore, the decision rule will be
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(b) In this case the MAP rule is
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(As a sanity-check you can observe that as p → 1 the right-hand-side of the above
approaches +∞ which means the received always decides x1 was sent.)
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(d) Since we have n independent uses of the channel, conditioned on {X = x} the output
vector Y has distribution
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Therefore, by Fisher–Neyman factorization,

T (y) =
n∑
i=1

yi

is a sufficient statistic for the hypothesis testing problem.

(e) The optimal decision rule will be

X̂MAP(y) =

x1 if T (y) ≤ n
(x1 + x2

2

)
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Given {X = x1}, T (Y) =
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Solution 4.

(a) This receiver is supposed to form the observable by computing the correlation between
the received signal and each of the sent signals. In order for (U1, . . . , U4) to be a
sufficient statistic we must have

Ui = 〈Y, xi〉 =

∫ +∞

−∞
Y (τ)xi(τ) dτ =

∫ 4

0

Y (τ)xi(τ) dτ.

From the theory of linear systems we know that Uis in the receiver will be equal to

Ui =

∫
Y (τ)xi

(
4− (t0 − τ)

)
dτ =

∫
Y (τ)xi(τ − t0 + 4) dτ,

thus, by setting t0 = 4 we get the desired sufficient statistics.

(b) Since the hypotheses are equally likely and x1, x2, x3, and x4 all have equal energy the
optimal decision rule is simply

îMAP(U1, . . . , U4) = arg max
i

Ui

(That is, the receiver declares xi(t) is sent is if Ui is the largest among U1, · · · , U4.)

(c) In this basis the signal representations are x1 = (2, 0, 0, 2), x2 = (0, 2, 2, 0), x3 =
(2, 0, 2, 0), and x4 = (0, 2, 0, 2).
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(d) The union bound is expressed in terms of the pairwise distances dij = ‖xi−xj‖ between
the signals since

Pr{error|xi} ≤
∑
j 6=i

Q

(
dij
2σ

)
.

From (c) we observe that d212 = d234 = 16 and d213 = d214 = d223 = d224 = 8, hence

Pr{error|xi} ≤ 2Q

(
2√
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)
+Q

(
2
√

2√
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)

Since the above does not depend on i, it also bounds the average error probability.

(e) Instead of correlating the received signal with each of the waveforms in the signal set,
the receiver can project it onto the space spanned by an orthonormal basis for the
signal set. Namely, to compute

Yi = 〈Y, ϕi〉 =

∫
Y (t)ϕi(t) dt, i = 1, 2, 3, 4.

In this case the optimal decision in terms of Y = (Y1, Y2, Y3, Y4) will be the minimum
distance decision,

x̂MAP(y) = arg min
x∈{x1,...,x4}

‖y − x‖.

Moreover, since the basis signal are shifted versions of ϕ(t) all the projections 〈Y, ϕi〉
can be computed using a single filter with impulse response ϕ(1−t) = ϕ(t) by sampling
its output at different times:

Y (t) = xi(t) +N(t) ϕ(t)

Y1

Y2

Y3

Y4

t = 1

t = 2

t = 3

t = 4

(f) The average of four signals is x̄(t) = 1
4

∑4
i=1 xi(t) = 1{0 ≤ t ≤ 4}. We can obtain a

minimum energy signal set by setting x̃i(t) = xi(t)− x̄(t).
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Note that in the new signal set x̃2(t) = −x̃1(t) and x̃4(t) = −x̃3(t). Furthermore the
signals x̃1(t) and x̃3(t) are orthogonal. Thus, using the orthonormal basis ϕ̃1(t) =
x̃1(t)
‖x̃1‖ = 1

2
x̃1(t) and ϕ̃2(t) = x̃3(t)

‖x̃3‖ = 1
2
x̃3(t), the signal representations will be x̃1 = (2, 0),

x̃2 = (−2, 0), x̃3 = (0, 2), x̃4 = (0,−2). These codewords correspond to those of a
4-PSK constellation.

The error probability of an optimal receiver for this set is
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Moreover, since translations of a signal set do not change the probability of error, the
error probability of the receiver in (b) is equal the same as above.
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