
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Solution 1.

(a)

(i) The MAP rule is simply

X̂(y) =

{
+1, y ≥ 0,

−1, y ≤ 0.

(ii) The MAP rule is
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which simplifies to
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(iii) Let τ := σ2
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Similarly,
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Consequently,
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(iv) Let Pe(p) denote the probability of error of the MAP rule (that we computed in
(ii)). We know from Homework 3 that Pe(p) is concave in p. In this case it is
also symmetric around p = 1

2
(i.e., Pe(p) = Pe(1 − p)). Thus it is maximized at

p? = 1
2
. (A more formal proof: Suppose Pe is maximized at some other point

p̃ < 1
2
. Then Pe(p̃) = Pe(1− p̃) but for any value of p ∈ [p̃, 1− p̃], Pe(p) ≥ Pe(p̃)

because of concavity — the function lies above the cord. Thus, p̃ cannot be the
maximizer.)



(v) Going along the same lines as in (iii), we get
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(vi) For any pair of real numbers α and β, maxq∈[0:1]{αq+β(1−q)} = max{α, β} (and
the maximum is attained with q = 1 if α ≥ β and q = 0 otherwise). Therefore,
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(vii) Since ln 1−p
p

= ln(1/p−1) is decreasing in p and Q(·) is decreasing in its argument,

from the results of (vi) it is obvious that Pe(p, ∗) decreases from Q(−∞) = 1 to
Q( 1

σ
) as p increases from 0 to 1

2
and again increases to Q(−∞) = 1 as p further

increases to 1. (Indeed, Pe(p, ∗) is symmetric around p = 1
2
.) Consequently, it is

minimized at p? = 1
2

with the minimum value of Q( 1
σ
).

This is, by construction, the optimal decoder since, for any other p, if the trans-
mitter chooses the prior Pr{X = +1} = q ∈ {0, 1} that maximizes Pe(p, q) we
will have a probability of error Pe(p, q) = Pe(p, ∗) ≥ Pe(p

?, ∗).

(b)

(i) The decision regions are as follows:

y1

y2

x1

x2

x3

(ii) The union bound gives Pe ≤ (M − 1)Q(dmin/(2σ)) where M is the number of
codewords and dmin is the minimum distance. In this case dmin = ‖x1−x2‖ =

√
2

and M = 3, thus,

Pe ≤ 2Q
(√2
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)
.

Solution 2.

(a) The spectrum of V is

SV (z) = −1

2
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.

The whitening filter that results in a causal effective channel is
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1

A∗(1/z∗)
=
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1− 1
2
z
.
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The output of whitening filter will be

S[n] = dW [n] ∗ U [n] =
∑
k

I[n− k]f [k] +W [n]

where W [n] is a circularly symmetric zero-mean noise with variance 1 (since SW (z) =
SV (z)DW (z)D∗W (1/z∗) = 1) and F (z) = (1− 1

2
z−1)(1− 1

2
z)DW (z) = (1− 1

2
z−1), hence

f [k] = δ[k]− 1
2
δ[k − 1]. We can write the channel model more explicitly as

S[n] = I[n]− 1

2
I[n− 1] +W [n].

(b) Since the effective channel has 2 taps (hence a memory of length 1), the Viterbi algo-
rithm requires |A| states.

(c) The zero-forcing equalizer is simply the inverse of the channel response, D(z) =
−1
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2
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Replacing z = ej2πf we get

DZF(f) =
1

5
4
− cos(2πf)

.

(d) After filtering we will get
ÎZF = I[n] + Ṽ [n],

where Ṽ [n] has spectrum

SṼ (f) = SV (f)|DZF(f)|2 =
1

D(f)

(where the last equality follows since SV (f) = D(f) and DZF(f) = 1
D(f)

.) In our case,

SṼ (f) =
1

5
4
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.

We finally have

E[Ṽ [n]2] = RṼ [0] =

∫ 1
2
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2

SṼ (f) df =

∫ 1
2
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4

3
.

(e) Since the information symbols are i.i.d., zero-mean, with unit variance, SI(z) = 1 and
the noise spectrum is SV (z) = D(z),

DLMMSE(z) =
1

D(z) + 1
=

1
9
4
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2
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,

which shows

DLMMSE(f) =
1

9
4
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.
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(f) In the Z-domain we have

ÎLMMSE(z) =
1

1 +D(z)
D(z)I(z) +

1

1 +D(z)
V (z).

Consequently,

E(z) := ÎLMMSE(z)− I(z) =
−1

1 +D(z)
I(z) + V (z)

1

1 +D(z)
.

Since I[n] and V [n] are independent zero-mean processes, SI(z) = 1 and SV (z) = D(z),

SE(z) =
1

(1 +D(z))(1 +D∗(1/z∗))
+

D(z)

(1 +D(z))(1 +D∗(1/z∗))
=

1

1 +D∗(1/z∗)
.

Therefore,

SE(f) =
1

1 +D∗(f)
=

1
9
4
− cos(2πf)

,

which implies

E[|E[n]|2] = RE[0] =

∫ 1
2

− 1
2

1
9
4
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df =
4√
65
.

(g) Under the assumption that the noise is Gaussian and with antipodal information sym-
bols, the probability of error is smaller if the noise variance is smaller. The LMMSE,
by definition, minimizes the effective noise variance at the input of the decision device,
hence, yields the smallest probability of error (that no other linear equalizer can ever
beat!).

Solution 3.

(a) It is equal to 3 symbols since we have 4 taps.

(b) We need x[−3] = x[1], x[−2] = x[2], and x[−1] = x[3].

(c) In order to determine the channel gains we take the length-4 DFT of the vector
(3
4
, 1
4
, 3
4
, 1
4
) and we multiply the result by

√
N = 2 (this factor is due to the partic-

ular way we normalized the DFT; see the hint at the end of the problem). The 4
independent channels have gains 2, 0, 1, and 0 respectively. For each channel the noise
is Gaussian of mean 0 and variance 1.

(d) To bring the channels into standard form we divide by the channel gain which changes
the variance by the square of the channel gain. After the conversion all channel gains
are 1 and the variances are 1/4, ∞, 1, and ∞, respectively. Note that the second
and fourth channels have infinite variance (they used to have zero gain). So these two
channels are useless for information transmission.

(e) We use water-filling. Clearly, we will only use the first and the third channels. Their
respective variances are 1/4 and 1. If we pick the constant to be 2 and “fill up” the
channels up to this constant then this means that we assign a power of 7/4 to the first
channel and a power of 1 to the second channel.

(f) If we plug in these noise powers and variance into the capacity formula we get a total
capacity of log2(1 + 7) + log2(1 + 1) = 4. Hence we can transmit up to 4 bits over a
length of 3 + 4 channel inputs. The number of bits per channel use is therefore 4/7.

(g) The most effective method would be to increase N to a much larger value. Currently
we loose a lot of rate because the gap is of the same order as N .
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