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Problem 1. Consider the usual discrete-time ISI channel model considered in class, with

D(z) =
1

(1− αz)(1− αz−1)
,

where α is a real-valued constant satisfying |α| < 1, meaning that the channel is given by

U [n] =
∞∑

k=−∞

d[k]I[n− k] + V [n],

where V [n] is additive Gaussian noise with power spectral density SV (z) = N0

2
D(z).

(a) If we apply the zero-forcing equalizer 1/D(z) to U [n], then we have seen in class that
the resulting overall channel becomes ÎZF[n] = I[n] + Ṽ [n]. Find the variance of the
noise Ṽ [n], that is, find E[Ṽ [n]2] (as a function of N0 and α).

(b) Assuming that we use BPSK (that is, the information symbols I[n] are independent
of each other, and are ±

√
E with uniform priors) and we separately slice each received

symbol ÎZF[n] at zero (exactly as in class), give the formula for the resulting bit error
probability in terms of the problem parameters, using the Q-function.

(c) Next, we would like to understand how suboptimal the Zero-forcing solution is. To this
end, as in class, let us apply the whitening filter (1 + αz) to the channel output U [n].
Working out the details, we find that the resulting equivalent channel is given by

S[n] =
∞∑
k=0

αkI[n− k] +W [n],

where W [n] is the usual (real-valued) AWGN of variance N0/2.

To find the minimum possible bit error probability is difficult for this model. Instead,
we will now derive a lower bound on the bit error probability — that is, an expression
that is lower than what we could ever hope to achieve. In order to obtain such a lower
bound, we idealize the situation: let us suppose that we set I[n] = 0 for all n 6= 0, and
in fact only send a single bit by setting I[0] =

√
E if the bit is one, and I[0] = −

√
E if

the bit is zero. Using the full received sequence S[n], for −∞ < n <∞, find a formula
for the error probability of the ML detector for recovering the single transmitted bit.

(d) Compare the error probability formulas from parts (b) and (c). Specifically, in order to
attain a certain desired target error probability (call it P0), how much more transmit
energy does the Zero-forcing solution from part (b) need than the lower bound from
part (c)? Discuss this as a function of the parameter α.

Problem 2. Consider a single transmitter and two receivers, which we will refer to as
users A and B, respectively. The transmitted signal is x[n], and the received signals are

yA[n] = x[n] +
1

2
x[n− 1] +

1

2
x[n− 3] +wA[n], yB[n] =

√
3

2
x[n] +

√
3

2
x[n− 2] +wB[n],

where wA[n] and wB[n] are independent of each other and the usual circularly symmetric
complex-valued Gaussian noises of variance N0. The transmitter uses FFT-OFDM.



(a) Determine the minimum length of cyclic prefix needed so that both users have an
ISI-free equivalent channel.

(b) For N = 4, determine the equivalent four channel gains from the transmitter to user
B (that is, the coefficients that were denoted as H0, H1, H2, and H3 in the class).

(c) Suppose that the transmitter is only sending a single bit: If the bit is one, then the
transmitter sends

√
E through all 4 channels (that is, X0 = X1 = X2 = X3 =

√
E),

and if the bit is zero, then the transmitter sends −
√
E through all 4 channels.

For user A, determine the ML detector of the single transmitted bit, given all four
channel outputs and give a formula for the resulting error probability.

(d) Suppose that the transmitter has one bit for user A and one bit for user B. In each of
the 4 channels, we will send only either

√
E or −

√
E , exactly like in part (c). But this

time, we choose a subset of the channels to send one bit to user A, and a different subset
of the channels to send the other bit to user B. Note that user A is only interested in
her bit, and does not attempt to recover the bit for user B, and vice versa. The goal is
to ensure that both users experience the same (or almost the same) error probability
in recovering their respective bit of interest, and that this error probability is as small
as possible. How should the channels be divided between the users? And what are the
resulting error probabilities for users A and B, respectively?

(e) Exactly like in part (d), suppose that the transmitter has one bit for user A and one
bit for user B. But by contrast, we now suppose that we have a total energy of 4E that
we are allowed to split any way we want between the two users. More precisely, in
each channel, we still do BPSK, but we select the energy for the BPSK in a clever way.
Then, each channel is assigned either to user A or to user B (or it can be left unused),
and for each channel, we have to determine what fraction of the total energy to use.
As before, the goal is to simultaneously have the smallest possible error probability for
both users in recovering their respective bits. Also give the formulas for the attained
error probabilities.

Problem 3.

(a) Consider the scalar AWGN channel Y = x + Z, where x is uniformly selected from
{±
√
E} and Z is the usual AWGN with power N0/2. Suppose that we quantize Y as:

D =


1, if Y ≥ θ

√
E ,

∗, if − θ
√
E ≤ Y < θ

√
E ,

0, if Y < −θ
√
E ,

where θ is an arbitrary (non-negative) constant. For future convenience, let us define:

α := Pr{D = 0|x =
√
E} β := Pr{D = ∗|x =

√
E}.

Calculate the values of α and β as a function of the problem parameters, using the Q-
function. Finally, argue that Pr{D = ∗|x = −

√
E} = β and Pr{D = 1|x = −

√
E} = α.

(b) Now consider the vector AWGN channel of length N, i.e., Y = x + Z, where Z is the
usual AWGN of variance N0/2. Suppose that x ∈ {±

√
E(1, 1, . . . , 1)} (with uniform

priors). Next, we apply the hard-decision detector from part (a) separately to each
entry in the vector Y to obtain the vector D, whose entries are thus either 0, 1, or ∗.
Derive the ML detector based on D. Simplify it as much as possible.
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