ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8

Advanced Digital Communications

Homework 3 (Graded, Due Oct. 17, 2016)

Oct. 10, 2016

Problem 1. (15 pts)

- (a) Let X_1, X_2, \ldots, X_n be a sequence of n > 1 binary i.i.d. random variables with $\Pr\{X_m = 0\} = \frac{1}{2}$. Let Z be a parity check on X_1, \ldots, X_n ; i.e., $Z = X_1 \oplus X_2 \oplus \cdots \oplus X_n$.
 - (i) Is Z independent of X_1 ?
- (iii) Are Z, X_1, \ldots, X_n independent?
- (ii) Are Z, X_1, \ldots, X_{n-1} independent?
- (iv) Is Z independent of X_1 if $\Pr\{X_m = 0\} \neq \frac{1}{2}$? (You may take n = 2 here.)
- (b) Let $\mathbf{Z} = (Z_1, \dots, Z_n)$ denote a jointly Gaussian vector with independent components each with zero mean and variance σ^2 , i.e., we have

$$f_{\boldsymbol{Z}}(\boldsymbol{z}) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{\|\boldsymbol{z}\|^2}{2\sigma^2}}$$

Let $\{\psi_1, \ldots, \psi_n\}$ be any orthonormal basis for \mathbb{R}^n and let $\mathbf{W} = (W_1, \ldots, W_n)$ denote a random vector whose components are the projections of \mathbf{Z} onto this basis, i.e, $W_i = \langle \mathbf{Z}, \psi_i \rangle$. Show that \mathbf{W} has the same distribution as \mathbf{Z} .

PROBLEM 2. (12 pts) Consider the binary hypothesis testing problem with MAP decision. Assume that priors are given by $(\pi_0, 1 - \pi_0)$.

- (a) Let $V(\pi_0)$ be the overall probability of error. Write the expression for $V(\pi_0)$.
- (b) Show that $V(\pi_0)$ is a concave function of π_0 i.e., for priors $(\pi_0, 1 \pi_0)$ and $(\pi'_0, 1 \pi'_0)$,

$$V(\lambda \pi_0 + (1 - \lambda)\pi_0') \ge \lambda V(\pi_0) + (1 - \lambda)V(\pi_0'), \quad \forall \lambda \in [0, 1]$$

PROBLEM 3. (14 pts) Consider an arbitrary signal set $A = \{a_j(t): 1 \leq j \leq M\}$. Assume $a_j(t)$ is chosen for transmission with probability p_j . Let $m_A(t) = \sum_j p_j a_j(t)$ be the average signal, and let A' be A translated by $m_A(t)$ so that the average of A' is zero:

$$A' = \{a_j(t) - m_A(t) : 1 \le j \le M\}.$$

Let \mathcal{E}_A and $\mathcal{E}_{A'}$ denote the average energies of A and A' respectively.

- (a) Show that the error probability of an optimum detector for an additive channel is the same for A' as it is for A.
- (b) Show that $\mathcal{E}_{A'} = \mathcal{E}_A ||m_A(t)||^2$. Conclude that removing the mean m_A is always a good idea.

PROBLEM 4. (14 pts) In this problem we develop further intuition about matched filters. Let

$$Y(t) = x(t) + Z(t)$$

be the channel output, where Z(t) is additive white Gaussian noise of power spectral density $\frac{N_0}{2}$ and x(t) is the transmitted pulse. Let h(t) be an arbitrary pulse, and consider a receiver that passes the received signal through the filter with impulse response h(t) and samples its output at time T to obtain,

$$Y = (h * x)(T) + (h * Z)(T).$$

- (a) Compute $\mathbb{E}[(h*Z)(T)]$ and $\operatorname{var}((h*Z)(T))$.
- (b) Let the signal-to-noise ratio (SNR) be defined as

$$SNR := \frac{|(h * x)(T)|^2}{\text{var}((h * Z)(T))}.$$

Find h(t) that maximizes the SNR. (You may need to use the Cauchy–Schwarz inequality.)

PROBLEM 5. (24 pts) The received signal in a communication system is given by

$$Y(t) = x_i(t) + Z(t)$$
 $i = 1, 2,$

where Z(t) is white Gaussian noise of spectral density $\frac{N_0}{2}$, and $x_1(t)$ and $x_2(t)$ are two different signals of equal energy $\mathcal{E} = ||x_1(t)||^2 = ||x_2(t)||^2$, equally probably to be sent.

- (a) Let $\varphi_1(t) = \frac{x_1(t) x_2(t)}{\|x_1(t) x_2(t)\|}$. Find $\varphi_2(t)$ such that $\{\varphi_1(t), \varphi_2(t)\}$ is an orthonormal basis for the space spanned by $\{x_1(t), x_2(t)\}$.
- (b) Implement the optimal receiver using only two filters $h_1(t) = \varphi_1(T-t)$ and $h_2(t) = \varphi_2(T-t)$ (for some T > 0 to ensure causality).
- (c) Simplify the decision rule of the receiver as much as possible. Conclude that the receiver can actually be implemented using only a single filter with impulse response $h_1(t)$.
- (d) Compute the error probability of the receiver and deduce that it is minimized when $x_2(t) = -x_1(t)$.

PROBLEM 6. (21 pts) Consider the vector problem

$$Y = x + Z$$

where Z is a vector of jointly Gaussian random variables with zero mean and covariance matrix Σ , which is assumed to be invertible x is uniformly chosen from the set $\{x_0, x_1\}$.

- (a) Using eigenvalue decomposition, a positive-definite matrix Σ can be written as $\Sigma = \Phi \Lambda \Phi^H$ where Φ is a unitary matrix and Λ a diagonal matrix. Show that we can also write Σ as $\Sigma = CC^H$ with some C, and express C in terms of Φ and Λ . What is the covariance matrix of the random vector $C^{-1}\mathbf{Z}$?
- (b) Derive the ML decision rule for \boldsymbol{x} based on the observation \boldsymbol{Y} and compute its error probability.

 Hint. First whiten the noise using the result in (a)
- (c) Let $\mathbf{x}_0 = (1,0)$ and $\mathbf{x}_1 = (0,-1)$. Give the simplest possible decision rule, sketch the decision region in the two-dimensional space of \mathbf{Y} for the following two different covariance matrices, and calculate the error probability for each covariance matrix:

$$\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \Sigma_2 = \begin{bmatrix} 1 & \frac{1}{3} \\ \frac{1}{3} & 1 \end{bmatrix}.$$