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Problem 1. (25 pts) Consider a scalar, real-valued two-user situation:

Y = 10xA + xB + Z,

where xA and xB are independently and uniformly selected from ±
√
E , as usual, and the

noise Z is the usual AWGN of variance N0/2.

(a) Describe the ML decoding regions and compute its error probability PML
e .

Next, we want to study a suboptimal detector:

(b) We first decode xA simply by thresholding the signal Y at zero. That is,

x̂A =

{√
E , if Y ≥ 0,

−
√
E , if Y < 0.

Compute the average error probability P
(A)
e of this decision (in terms of theQ-function).

(c) Continuing with the detector from (b), we next form

Ỹ = Y − 10x̂A,

where x̂A is precisely the decision we took in (b) (which may be right or wrong).
Engineers refer to this as canceling the interference created by user A. Then, we decide
for user B:

x̂B =

{√
E , if Ỹ ≥ 0,

−
√
E , if Ỹ < 0.

Unfortunately computing the probability of error for the second user, that is Pr{x̂B 6=
xB} is difficult. Instead, consider a genie-aided decoder for user (B) that, instead of
Ỹ , uses

Y ′ = Y − 10xA

as the input to the decision box and decides

x̃B =

{√
E , if Y ′ ≥ 0,

−
√
E , if Y ′ ≤ 0

Compute the average error probability P
(B)
e for this genie-aided decoder (in terms of

the Q-function).

(d) The overall detector resulting from (b) and (c) is referred to as a successive decoder.
Show that an overall decoding error event happens if and only if the genie-aided decoder
makes an error. Namely

{(x̂A, x̂B) 6= (xA, xB)} = {(x̂A, x̃B) 6= (xA, xB)} .



(e) Give simple upper and lower bounds on the overall probability of the successive decoder

in terms of P
(A)
e and P

(B)
e .

(f) Let us call a detector high-SNR optimal if it satisfies

lim
E→∞

Pe

PML
e

= 1,

where Pe is the error probability of the detector in question, and PML
e is the error

probability of the ML detector (as in (a)). Prove that the successive decoder you
analyzed in (b)–(d) is high-SNR optimal.

Hint. You may use the fact that for all a > 1, the ratio limx→∞Q(ax)/Q(x) = 0.

Problem 2. (15 pts) Consider a network with three nodes: a source node, a destination
node, and a relay node described via

Yr[n] = Hsr[n]xs[n] + Zr[n],

Yd[n] = Hsd[n]xs[n] +Hrd[n]xr[n] + Zd[n],

where Zr[n] and Zd[n] are i.i.d. circularly-symmetric complex Gaussian noise processes of
variance N0, Hsr[n], Hsd[n] and Hrd[n] are independent Rayleigh fading coefficients for the
source–relay, source–destination, and relay–destination links, respectively, known to the
receiver (but not to the transmitter) and xs[n] and xr[n] are the sent signals from the
source and the relay respectively. Clearly, the diversity order on the link from the source
to the destination is simply 1. We wonder if the relay can increase the diversity orders?
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Consider the amplify-and-forward transmission scheme: At time n = 1, the relay re-
mains silent, hence the receiver observes

Y [1] = Hsd[1]xs[1] + Zd[1].

In the next time-slot, n = 2, the source node is silent and the relay node transmits what it
has received, xr[2] = Yr[1], thus the destination node receives

Yd[2] = Hrd[2]xr[2] + Zd[2] = Hrd[2]Hsr[1]xs[1] +Hrd[2]Zr[1] + Zd[2].

Find the resulting overall diversity order when the destination uses optimal detection based
on both received samples Yd[1] and Yd[2] for the following two cases:

(a) Hrd[2] = h, where h is a complex constant and |h| > 0.

(b) Hrd[2] is Rayleigh fading independent of Hsr[1] and Hsd[1].

Note. You may assume that BPSK is used if this helps. As you may have noticed, the diversity

order is independent of the modulation format — be it BPSK, 16-QAM, or your good old favorite.
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Problem 3. (15 pts) Consider a transmitter sending signals to be received by two receive
antennas. However, due to an unfortunate coincidence, there is a flag fluttering in the wind
quite close to one of the receive antennas and sometimes completely blocks the received
signal.

(a) In the absence of the flag, the received signal is given by a flat fading model,[
Y1

Y2

]
=

[
H1

H2

]
X +

[
Z1

Z2

]
where Y1, Y2 are the received signals on first and second receive antennas respectively,
X is the transmitted signal and H1, H2 are respectively the fading attenuation from
the transmitter to the first and second receive antennas. Assume that X is binary, i.e.,
X ∈ {−

√
E ,
√
E}. The additive noise Z1, Z2 are assumed to be independent circularly

symmetric complex Gaussian with variance (each) of σ2. Assume that H1, H2 are i.i.d.
circularly-symmetric complex Gaussian with unit variance known to the receiver.

Compute an upper bound to the average the error probability and comment about the
behavior of the error probability with respect to SNR for high SNR.

(b) Now consider the presence of fluttering flag which could potentially block only the
second receive antenna. The model given in (a) now changes to:[

Y1

Y2

]
=

[
H1

FH2

]
X +

[
Z1

Z2

]
,

where the random variable F equals 0 if the flag obstructs the signal and 1 otherwise.
Suppose due to the random fluttering, the flag blocks a fraction q of the transmissions,
i.e., for a fraction q of the transmission, one receives only the signal from the first
antenna. Assume the receiver knows F .

Conditioned on F , write down the error probabilities, i.e., find an expression for the
error probability.

(c) Find the overall error probability in the presence of the fluttering. How does the error
probability behave at high SNR?

Problem 4. (20 pts) Consider the following communication setting, where there is not
only additive noise but the phase of the transmitted complex vector X is corrupted as well:

Y = ejΘX + Z,

where Z is a complex circularly symmetric Gaussian random vector with covariance matrix
I and Θ is a uniform random variable in [0, 2π]. The random vector Z and the random
variable Θ are independent of each other and also of X. Suppose X is equally likely to be
one of x0 or x1, where x0 and x1 are vectors with equal energy, ‖x0‖2 = ‖x1‖2 = E .

(a) Show that the conditional probability density f(y|X = xm) is given by

f(y|X = xm) = Ce−‖y‖
2

g(|〈y,xm〉|)

where g(a) = (2π)−1
∫ 2π

0
exp(2a cos(θ)) dθ and C is a constant.

Can the decoder make its decision on the basis of the two values |〈y,x0〉| and |〈y,x1〉|
alone?
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(b) Show that g(a) is an increasing function for a ≥ 0. Does the decision rule:

“Choose m that maximizes |〈y,xm〉|”

minimize the probability of error?

(c) Assume further that 〈x0,x1〉 = 0. Find the error probability of the optimal decoder.

(d) Suppose now that the channel also corrupts the amplitude:

Y = HejΘX + Z

where H is an unknown scalar chosen independently of X, Z and Θ. Would you spend
any effort in estimating H? (A few of lines of explanation is sufficient.)

Problem 5. (25 pts) Consider transmission over two independent (parallel) channels

Y1 = H1X1 + Z1 and Y2 = H2X2 + Z2

where Z1 and Z2 are independent circularly symmetric Gaussian noises of mean zero and
variance N0 and H1 and H2 are independent Rayleigh fading coefficients, i.e., they are
circularly symmetric complex Gaussian random variables with variance 1. We want to
transmit two bits across a single use of two channels and we would like to compare the
following two transmission strategies:

Strategy A Send independent BPSK symbols with power E across independent channels,
that is we pick X1 ∈ {±

√
E} and X2 ∈ {±

√
E} independently.

Strategy B Map the 2 bits to a symbol from a symmetric 4-PAM constellation with
power E and send the same signal through both channels. That is we set X1 = X2 ∈
{−3a,−a, a, 3a}.

(a) Compute the value of a so that the average power of the 4-PAM constellation is E .

(b) Compute the error probability of each of the signaling strategies conditioned on H1 = h1

and H2 = h2 for arbitrary complex-valued constants h1 and h2.

(c) How does the (conditional) error probabilities in (b) behave when E gets large? Con-
sider the cases h1 = h2 and h1 6= h2 separately and decide which strategy is preferable
in each case. (Note that the error probabilities you consider in this case describe the
performance of the system without fading.)

(d) Compute the average error probabilities for each signaling strategy (averaged over the
fading states H1 and H2 as usual).

(e) How do the average error probabilities behave when E is large? Which strategy is
preferable?
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