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1

REVIEW

1. HYPOTHESIS TESTING - DISCRETE CASE

Assume we have a set of hypotheses H
��� 0 � 1 ����������� m 	 1 
�� : ��m 	 1 � with priors

pi  Pr � H  i � and that we observe the random variable Y ��� , where we denote
the likelihood of observing y under the hypothesis i by fY �H � y � i 
 .

Then, using Bayes’ rule, the probability that i is the correct hypothesis given
that y was observed, denoted by pH �Y � i � y 
 , is equal to

pH �Y � i � y 
�
fY �H � y � i 
 pi

fY � y 
  fY �H � y � i 
 pi

∑i fY �H � y � i 
 pi �
Note that for a fixed y we maximize the probability of correct decision if we
choose the rule

Ĥ � y 
 :  argmaxi pH �Y � i � y 
� argmaxi fY �H � y � i 
 pi �
This is true since, as observed above, pH �Y � i � y 
 is the probability that i is the
correct hypothesis given that y was observed. This rule is called the Maximum A
Posteriori (MAP) decision rule. Integrating over all observations y (weighted with
fY � y 
 ) we see that the MAP rule maximizes the probability of correct decision.

Of particular importance is the Gaussian case. Here we wish to distinguish
between m given points ai

��� n. Under hypothesis i, the observation Y is Y 
ai � Z, where Z �� Z1 ��������� Zn 
 is a jointly Gaussian vector of independent zero
mean random variables each of variance � 2. Therefore

fY �H � y � i 
� 1

� 2 ��� 2 
 n � 2 e �
 
y ! ai
 2

2 " 2

�
7



8 CHAPTER 1. REVIEW

Recall, that for any unit vector in � n the projection of the vector Z onto this
unit vector results in a zero mean Gaussian random variable with � 2 and that the
projection onto orthogonal dimensions are independent. In this case we see that
the decision rule can be written as

Ĥ � y 
  argmaxi fY �H � y � i 
 pi

 argmaxi
1

� 2 ��� 2 
 n � 2 e �
 
y ! ai
 2

2 " 2 pi

 argmaxi 	
�
y 	 ai

� 2

2 � 2 � ln � pi 


 argmini

�
y 	 ai

� 2

2 � 2 	 ln � pi 
 (1.1)

 argmaxi 	
�
y
� 2

2 � 2 �
�
y � ai �
� 2 	

�
ai
� 2

2 � 2 � ln � pi 


 argmaxi

�
y � ai �
� 2 	

�
ai
� 2

2 � 2 � ln � pi 
 � (1.2)

We see from (1.1) and (1.2) that in order to arrive at the optimal decision, we do
not need to know the observation y itself but it suffices to know either the set of
Euclidean distances � � y 	 ai

� 2 � i ���m � 1 � or the set of inner products � � y � ai � � i ���m � 1 � .
We call such a quantity a sufficient statistic.

Under the assumption of uniform priors the decision rule has the following
nice geometric interpretation depicted in Fig. 1.1: the decision regions equal the
Voronoi regions of the set of points � a0 ��������� am � 1 � . More precisely, let 	 i de-
note the decision region associated to hypothesis i, i

� �m 	 1 � . We require that� 	 i � i ���m � 1 � partitions the whole space, i.e., the decision regions are disjoint and
their union is equal to � n. We see from (1.1) that in the case of equal priors we
have1

	 i  �
x
� � n :

�
x 	 ai

� 2 
 �
x 	 a j

� 2 ��� j
� �m 	 1 �� � i ���

 �
x
� � n :

�
x 	 ai � a j

2
� ai 	 a j ��� 0 ��� j

� �m 	 1 �� � i ��� �
where the first definition tells us that 	 i is equal to the set of points which are
closer (in terms of Euclidean distance) to hypothesis ai than to any other hypoth-
esis a j, j � i, and where the second definition tells us that this region can be
defined as the intersection of half spaces, each of them defined by means of a hy-
perplane. Note that in this equal prior case the decision rule is independent of � 2,
i.e., an optimal decision can be taken without knowing the magnitude of the noise
variance.

In the general case with possibly nonuniform priors the decision regions are
still given in terms of hyperplanes. To see this, it suffices to look at the case with

1In this definition we ignored boundary points, i.e., points which lie at equal (minimum) distance
to several hypotheses. Those ties can be broken in an arbitrary manner without effecting the resulting
probability of error.
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Figure 1.1: Example of optimal decision regions for the Gaussian case with uni-
form prior and sixteen hypotheses. The optimal decision regions are equal to the
Voronoi regions.

only two hypotheses. In this case the decision rule can be written in the following
form:

�
y � a0 �
� 2 	

�
a0

� 2

2 � 2 � ln � p0 
 � Ĥ � 0



Ĥ � 1

�
y � a1 �
� 2 	

�
a1

� 2

2 � 2 � ln � p1 

�
y 	 a0 � a1

2 � a0 	 a1 �
� 2 � Ĥ � 0



Ĥ � 1

ln
p1

p0

�
y 	 a0 � a1

2
� a0 	 a1�

a0 	 a1
� � � Ĥ � 0



Ĥ � 1

� 2
�
a0 	 a1

� ln
p1

p0

The geometric interpretation of this decision rule is shown in Fig. 1.2. Using
this geometric interpretation we can immediately write down the respective error
probabilities Pr � e �H  0 � and Pr � e �H  1 � .2 Denote by Z a0 ! a1 

a0 ! a1
 the noise com-

ponent in direction of the unit vector a0 � a1�
a0 � a1

� . Note that by assumption Z a0 ! a1 
a0 ! a1

 is

2Recall the definition of the Q ��� � function,

Q � x � : �
	 ∞

x

1�
2 � e ! u2

2 du 
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a0

a1

y

Ĥ � 0 Ĥ � 1

a0
�

a1
2

d � � 2�
a0 � a1

� ln
p0
p1

d

Figure 1.2: Geometric interpretation of the decision rule for the Gaussian case and
m  2.

Gaussian with variance � 2. We therefore have

Pr � e �H  0 �  Pr � Z a0 ! a1 
a0 ! a1

 
 	
�
a0 	 a1

�
2

	 � 2
�
a0 	 a1

� �

 Q

� �
a0 	 a1

�
2 � � ��

a0 	 a1
� ln

p0

p1 � �
Pr � e �H  1 �  Q

� �
a0 	 a1

�
2 � 	 ��

a0 	 a1
� ln

p0

p1 � �
In terms of the Q-function we can express the probability of error for various

popular modulation schemes.

Example 1. [QAM] In this case all four points are equivalent and we have the

s0 s1

s2s3

d

Figure 1.3: QAM constellation.

probability of correct decision, call it Pr � c � ,
Pr � c �  Pr � c �H  0 �

 Pr � Z1 � d � 2 � Pr � Z2 � d � 2 �


�
1 	 Q

�
d

2 � �	� 2

�
Therefore, the probability of error is equal to Pr � e �  2Q 
 d

2 �� 	 Q 
 d
2 �� 2

.
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2. IRRELEVANCE

In the sequel it will be handy to be able to refer to the following theorem.

Theorem 1. [Irrelevance] Let the hypothesis H take values in � 0 � 1 ����������� m 	 1 
��
and assume that the observation for a hypothesis testing problem is equal to Y 
� Y1 � Y2 
 . Then the MAP decision rule can be based onY1 alone if fY2 �Y1 �H � y2 � y1 � i 
 
fY2 �Y1

� y2 � y1 
 . Conversly, this condition is also necessary for the decision metric to
be independent of Y2.

Proof. Using Bayes’ rule and the assumption that fY2 �Y1 �H � y2 � y1 � i 
� fY2 �Y1
� y2 � y1 


we get

Ĥ � y1 � y2 
 :  argmaxi

�
pH �Y1 �Y2

� i � y1 � y2 
��
 argmaxi

�
fY2 �Y1 �H � y2 � y1 � i 


pH �Y1
� i � y1 


fY2 �Y1
� y2 � y1 
 �

 argmaxi

�
fY2 �Y1 �H � y2 � y1 � i 
 pH �Y1

� i � y1 
 �
 argmaxi

�
pH �Y1

� i � y1 
 � �
which shows that in this case the MAP decision rule may be based on Y1 alone.

Assume now that we require that the decision metric fY2 �Y1 �H � y2 � y1 � i 
 pH �Y1
� i � y1 


be independent of Y2. Then we have

fY2 �Y1 �H � y2 � y1 � i 
 pH �Y1
� i � y1 
� fY2 �H �Y1

� y2 � i � y1 

 fY2 �Y1

� y2 � y1 
 pH �Y1 �Y2
� i � y1 � y2 
 ! fY2 �Y1

� y2 � y1 
 pH �Y1
� i � y1 
 �

which shows that fY2 �Y1 �H � y2 � y1 � i 
� fY2 �Y1
� y2 � y1 
 .

3. INNER PRODUCT SPACES AND GRAM-SCHMIDT ALGORITHM

In the previous section we have made some use of properties of the inner product
of elements of � n. Several other inner product spaces will be important in the
sequel and so we quickly review some basic facts about them. Let V be a vector
space over the complex numbers.3 An inner product on V is then a mapping
V 2 ��� , which we will denote by

� � ��� � , such that for any triple x � y � z � V and any
scalar � � � ,

� �
x � y � z �  �

x � z � � �
y � z � ,

3In the same manner we can define an inner product over the real numbers.
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� � � x � y �  � � x � y � ,� �
x � y �  �

y � x � � ,� �
x � x ��� 0, for x � 0.

Example 2. [ � n] The standard inner product space is � n with
�
x � y �  ∑n

i � 1 xiy
�
i .

Example 3. Let V be the vector space of square integrable functions on � , i.e.,
V  L2 � � 
 , either over � or over � . It is easy to verify that


 x � t 
 � y � t 
 � : 
���

x � t 
 y � � t 
 dt

specifies a well-defined inner product in this case.

Let V be an inner product space and let A  � a1 � ����� � am � be a set of elements
of V . The following Gram-Schmidt procedure then allows us to find an orthonor-
mal basis for A, let this basis be ��� 1 ������� � � n � , n � m, so that

ai 
n

∑
j � 1

�
ai � � j � � j � i

� � n � �
This basis is recursively defined by (ignoring cases of dependent vectors)

�
1  a1� �

a1 � a1 ��
2  a2 	

�
a2 � � 1 � � 1�

a2 	
�
a2 � � 1 � � 1

... ������
n  am 	 ∑m � 1

j � 1

�
am � � j � � j�

am 	 ∑m � 1
j � 1

�
am � � j � � j

�

4. HYPOTHESIS TESTING - CONTINUOUS CASE

Next consider a hypothesis testing scenario in which the hypotheses are elements
of some set of signals � a0 � t 
 ������� � a 	 m � 1 
 � t 
 � , where we assume that each ai is
square integrable. Assume further that the observation conditioned on the fact
that the correct hypothesis is ai is equal to

Y � t 
� ai � t 
 � Z � t 
 �
where Z � t 
 is a white Gaussian noise process with double-sided power spectral
density N0

2 . Let ��� 1 � t 
 ��������� � n � t 
 � be an orthonormal set for the space spanned
by �

a0 � t 
 ������� � a 	 m � 1 
 � t 
�� . E.g., we can apply the Gram-Schmidt procedure to
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�
a0 � t 
 ��������� a 	 m � 1 
 � t 
�� to generate ��� 1 � t 
 ��������� � n � t 
 � . Let ai

��� n be the expan-
sion of ai � t 
 with respect to ���

1 � t 
 ������� � � n � t 
�� , i.e., ai  � ai1 ��������� ain 
 , where
ai j 

�
ai � t 
 � � j � t 
 � . Similarly, define Z j 

�
Z � t 
 � � j � t 
 � , so that � Z1 ������� � Zn 
 . Then

Y � t 
�
n

∑
j � 1

ai j
�

j � t 
 �
n

∑
j � 1

Z j
�

j � t 
 � Z � � t 
 �

This can be interpreted as follows: Think of the hypothesis as points in the n
dimensional space. We now split the noise into that part which lives in this n-
dimensional space and the part which is orthogonal to it. Since the orthogonal
noise part is jointly independent of the transmitted hypothesis and the noise part
within the n-dimensional space, by the Irrelevance Theorem 1 we can base our de-
cision on the projection of Y � t 
 onto the subspace spanned by ��� 1 � t 
 ��������� � n � t 
 � .
Therefore, we are concerned with a Gaussian hypothesis testing problem where
the set of hypotheses is equal to a set of m points � a0 ������� � a 	 m � 1 
 � in � n. The
observation Y in this case is Y  ai � Z, where Z  � Z1 ��������� Zn 
 is a jointly Gaus-
sian vector of independent zero mean random variables of variance � 2  N0

2 , see
Exercise 1.1. But we have already seen how to solve this problem! Assume that
we have uniform priors and look at the decision rule expressed in (1.2). This im-
mediately gives rise to the correlation receiver shown in Fig. 1.4. Note that the

arg
maxY � t �

�
1 � t �

�
0 � t �

Integrator

Integrator

Y0

Y1

�
Y � a0 �

�
Y � a1 �

! � a0
� 2

2

! � a1
� 2

2

Ĥ

Figure 1.4: Correlation receiver.

important quantities
�
Y � t 
 � � j � t 
 � can be implemented either as correlation or by

sampling the output of the filter h � t 
� �
j � 	 t 
 when input with the signal Y � t 
 at

time t  0. The second approach is called a matched filter.

5. FOURIER AND Z-TRANSFORM

5.1 Z-TRANSFORM AND DISCRETE TIME FOURIER TRANSFORM

Assume we have a (complex valued) power series

∑
n � 0

anzn
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with the associated partial sums An � z 
  ∑n
m � 0 anzn. Let the radius of convergence

R be defined by
1
R
 limsup

n � ∞
� a � 1n �

Recall from calculus that the series converges for � x � 
 R and diverges for � x � � R.

To see this, note that if � x �  � R, � 
 1, then � anxn �
for n suff. large� � � x �

R � n � � n and

that the series ∑n � 0 � n converges for � 
 1. If on the other hand � x � � R then by

the definition of limsup there exist infinitely many indixes k such that � akxk � 1k � 1
and therefore there exist infinitely many indices such that �Ak � x 
 	 Ak � 1 � x 
 � � 1.
It follows by the Cauchy criterion that An � x 
 does not converge. It follows that if
we are given a sum of the form

∞

∑
n � � ∞

anzn

then the region of convergence is an annular region (simply split the sum into the

positive and the negative indices and observe that x � k  
 1
x � k

.)

Assume we have a discrete time (real or complex valued) signal xn, n
��� . Its

associated z-transform, call it H � z 
 (if it exists), is defined by

Definition 1. [z-Transform]

H � z 
  ∑
n

hnz � n

�
The inverse z-transform is usually accomplished by means of a partial fraction
expansion, see Exercise 1.11.

Definition 2. [Basic Properties of z-Transform]

h
�
� n � H

� � 1 � z � 
 (1.3)

hn � m � H � z 
 z � m

∑
k

hkgn � k � H � z 
 G � z 


∑
k

hkg
�
k � n � H � z 
 G � � 1 � z � 


We say that a sequence hn is causal if hn  0 for n 
 0 and we say that it
is anticausal if hn  0 for n � 0. For a causal sequence the ROC is of the form
� z � � R whereas for an anticausal it is of the form � z � 
 R. We say that a sequence
is stable if ∑n � hn � 
 ∞. The ROC of a stable sequence must contain the unit circle.
If H � z 
 , the z-Transform of hn, is rational then this implies that for a stable and
causal system all the poles of H � z 
 must be within the unit circle. Finally, we
say that a sequence hn with rational z-Transform H � z 
 is minimum phase, if all its
poles and zeros are within the unit circle. Such a sequence has the property that
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for all N � 0 it maximizes the quantity ∑N
n � 0 � hn � 2 over all sequences which have

the same �H � z 
 � .
The Discrete-Time Fourier Transform (DTFT) of hn is defined as

Definition 3. [DTFT]

H � e2 � j f 
  ∑
n

hne � 2 � j f n �

hn 
� 1

0
H � e2 � j f 
 e2 � j f nd f �

Its basic properties follow immediately from the one of the z-Transform if we
observe that

H � e2 � j f 
� H � z 
 � z � e2 � j f �

(assuming that the ROC of H � z 
 contains the unit circle), hence the notation
H � e2 � j f 
 .

Definition 4. [Fourier Transform]

H � f 
 
� ∞

� ∞
h � t 
 e � 2 � j f tdt

h � t 
 
� ∞

� ∞
H � f 
 e2 � j f t d f

5.2 FOURIER TRANSFORM

Definition 5. [Properties of Fourier Transform]

h
� � 	 t 
 � H

� � f 
 (1.4)

h � t 	 s 
 � H � f 
 e � 2 � js f (1.5)

h � t � a 
 � aH � f a 
 (1.6)

sinc � t 
� sin � � t 

� t � rect � f 
�

�
1 � � f � � 1

2 �
0 � � f � � 1

2 �
(1.7)� ∞

� ∞
h ��� 
 g � t 	�� 
 d � � H � f 
 G � f 
 (1.8)� ∞

� ∞
h ��� 
 g � ��� 	 t 
 d � � H � f 
 G � � f 
 (1.9)� ∞

� ∞
h � t 
 g � � t 
 dt 

� ∞

� ∞
H � f 
 G � � f 
 d f (1.10)
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Example 4. [Basic Properties of sinc Function] Using the above relations we get.

sinc � t 
� sin � � t 

� t � rect � f 
 : 

�
1 � � f � � 1

2 �
0 � � f � � 1

2 �
sinc

� t� � �

� � � � f � � 1
2 � �

0 � � f � � 1
2 � �

sinc
� t� 	 n �  sinc

�
t 	 � n� � �

� � e � 2 � jn � f � � f � � 1
2 � �

0 � � f � � 1
2 � �� ∞

� ∞
sinc

� t� 	 n � sinc
� t� 	 m � dt 

� 1
2 �

� 1
2 �

� 2e � 2 � j 	 n � m 
�� f d f 
�

0 � m � n �� � n  m �

From the last equality we conclude that sinc 
 t
� � is orthogonal to all of its shifts

(by multiplies of � )! Further, we see that the functions
�

1
�

sinc 
 t
�
	 n � , n

� � ,
form an orthonormal set. One can also show that this set is complete for the class
of square integrable functions which are low-pass limited to 1

2 � .

6. SAMPLING THEOREM

Theorem 2. [Sampling Theorem] Let f � t 
 be a square integrable function which
is low-pass limited to W . Then f � t 
 is specified by its values at a sequence of
points spaced �  1

2W apart. In particular,

f � t 
 
∞

∑
� ∞

f � n � 
 sinc
� t� 	 n � �

7. NYQUIST CRITERION

Theorem 3. [Nyquist Criterion] A function � � t 
 and its shifts � � t 	 n � 
 form an
orthonormal set if and only if

∞

∑
� ∞
� � � f 	 k� 
 � 2  � � 	 1

2 � � f � 1
2 � �
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t � Yi � Xi � Zis

�
t � � Z

�
t �

i �matched filter

Figure 1.5: Optimal receiver structure.

Proof. �
1 � n  0 �
0 � n � 0

assumption
� ∞

� ∞

� � t 	�� n 
 � � � t 
 dt

	 1 	 4 
 & 	 1 	 5 

� ∞

� ∞
� � � f 
 � 2e � 2 � jn � f df

� f � f 1�
� � 1

2

1
2



∑
k

� � � f 	 k� 
 � 2 � e � 2 � jn f df �
Note that the right hand side is equal to 1

� times the n-th Fourier coefficient of

the function
�
∑k �

� � f � k
�

 � 2 � . From the left hand side we see that this function

only has a DC term and that this DC term is equal to one. From this the claim
follows.

8. TRANSMISSION OVER THE BANDLIMITED AWGN CHAN-
NEL

Assume that we use a Nyquist pulse � � t 
 to generate the signal

s � t 
�
∞

∑
i � � ∞

Xi
� � t 	 i � 
 �

Assume further that
� � f 
 is band limited to W , W � 1

2 � , and that we use s � t 
 to
transmit over a band-limited AWGN channel with bandwidth at least W . Then the
optimal receiver structure is as shown in Fig. 1.5.

I.e., the continuous waveform channel is converted into the equivalent dis-
crete time channel Yi  Xi � Zi, where Zi is a sequence of i.i.d. zero mean Gaussian
random variables with variance � 2  N0

2 .

9. COMPLEX GAUSSIAN RANDOM VARIABLES AND PROCESSES

We have already seen that if Z  � Z1 � ����� � Zn 
 denotes a real valued zero mean
jointly Gaussian vector with independent components each of variance � 2 then

fZ � z 
� 1

� 2 ��� 2 
 n � 2 e �
 
z
 2

2 " 2

�
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In the general (correlated) case the density function fZ � z 
 has the form

fZ � z 
� 1

� 2 ��
 n � 2
�
�K � e �

1
2
	 z ��� 
 K ! 1 	 z ��� 
 T �

where mean � and covariance K are defined by ���� � Z � and K �� � � Z 	���
 T � Z 	
��
 � . Note that in the Gaussian case mean and covariance completely specify the
probability density function and that uncorrelatedness implies independence.

Consider now a complex-valued Gaussian random variable Z, i.e.,

Z  R � jI �
where R and I denote the real and imaginary components and where we assume
that � R � I 
 is jointly Gaussian. Assume that Z has zero mean. It follows that
the probability density function of Z is completely specified by the second order
statistics of � R � I 
 , i.e., by

K 
� � � R2 ��� � RI �
� � RI ��� � I2 � � �

Let
RZ 	� � ZZ

� � 
� � R2 � � � � I2 � (1.11)

denote the correlation. As we can see, in the complex case the correlation is not
sufficient to specify the pdf of the random variable. Define the complementary
correlation to be

R̃Z 	� � ZZ � 	� � R2 � 	�� � I2 � � 2 j � � RI � � (1.12)

We can see that both RZ and R̃Z are completely specified by the triple RR, RI and
RRI and vice versa

RR  Re � RZ � R̃Z 
2

�

RI  Re � RZ 	 R̃Z 
2

�

RRI  Im � 	 RZ � R̃Z 
2

 Im � R̃Z 
2 �

Further, we see that the real part and the complex part of Z are equal variance and
uncorrelated (and hence independent) if and only if R̃Z  0 and that in this case
they also have the same variance. Therefore, we will call a complex-valued zero
mean Gaussian random variable circularly symmetric iff R̃Z  0. The variance in
each component is then simply half the total variance, i.e., RR  RI  1

2 RZ .

We will now generalize to complex-valued Gaussian vectors. Let Z  � Z1 � ����� � Zn 

be a vector of zero-mean complex-valued Gaussian random variables. If the dis-
tribution of any subset of real and imaginary components is jointly Gaussian we
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will say that Z is a complex-valued Gaussian vector. Again we will assume that Z
has zero mean and, as in the real case, this implies that the pdf of Z is completely
specified by its second order statistics. It is easy to see that, similar to the one
dimensional case, the quantities RRiR j , RIiI j and RRiI j specify the correlation

RZiZ j  � � Zi Z
�
j �

 � � Ri R j � � � � Ii I j � 	 j � � Ri I j � � j � � R j Ii �
 RRiR j � RIiI j 	 jRRiI j � jRR jIi �

and the complementary correlation

R̃ZiZ j  � � Zi Z j �
 � � Ri R j � 	 � � Ii I j � � j � � Ri I j � � j � � R j Ii �
 RRiR j 	 RIiI j � jRRiI j � jRR jIi �

Vice versa, we have

RRiR j  Re � RZiZ j � R̃ZiZ j 
2

�

RIiI j  Re � RZiZ j 	 R̃ZiZ j 
2

�

RRiI j  Im � 	 RZiZ j � R̃ZiZ j 
2

�

RR jIi  Im � RZiZ j � R̃ZiZ j 
2 �

Assume now that for all i and j we have R̃ZiZ j  0 and that for i � j, RZiZ j  0.
In this case we conclude that any subset of real and imaginary components are
uncorrelated and, hence, independent and that all real and imaginary components
have the same variance. We will again say in this case that the random variables
are circularly symmetric. Note that such a process is completely specified by its
power spectral density.

We can translate this concept to complex-valued Gaussian processes. A complex-
valued zero-mean Gaussian process is circularly symmetric if

� � Z � t 
 Z � t 	�� 
 �  0 � � t � � �
Note that such a process is strict sense stationary if and only if it is wide sense
stationary.

Next note that the property of being circularly symmetric is preserved by
linear time-invariant filtering, since if Z � t 
 is circularly symmetric and if Y � t 

is the result of passing X � t 
 through a linear time-invariant filter with impulse
response h � t 
 then

� �Y � t 
 Y � t 	 � 
 �  � �
h � � 
 h � � 
 � � X � t 	 � 
 X � t 	�� 	 � 
 � d� d

�  0 �
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10. FILTERING OF WIDE SENSE STATIONARY STOCHASTIC PRO-
CESSES

Let X � t 
 denote a (real or complex valued) wide sense stationary stochastic pro-
cess with mean mX 
� � X � t 
 � and autocorrelation function RX ��� 
 ,

RX ��� 
 
� � X � t 
 X � � t 	�� 
 � �
Recall that the power of the stochastic process is equal to

RX � 0 
�	� � �X � t 
 � 2 � �
Further, the power spectral density associated to X � t 
 , denoted by SX � f 
 , is equal
to the Fourier transform of RX ��� 
 , i.e.,

SX � f 
�
�

RX ��� 
 e � 2 � j � f df �
Note that RX ��� 
 is conjugate symmetric, i.e, RX ��� 
  R

�
X � 	 � 
 , so that SX � f 
 is

real valued.

Let Y � t 
 denote the result of passing X � t 
 through a linear time invariant filter
with impulse response h � t 
 , i.e.,

Y � t 
�
�

X ��� 
 h � t 	 � 
 d� �
We then have

RY ��� 
  � �Y � t 
 Y � � t 	�� 
 �
 �

� � �
h � � 
 X � t 	 � 
 d� � � �

h
� � � 
 X � � t 	 � 	 � 
 d

� ���


���
h � � 
 � ��� h

� � � 
 � � X � t 	 � 
 X � � t 	�� 	 � 
 � d
� � d�


� �

h � � 
 � � � h
� � � 
 RX � � 	 � � � 
 d

� � d�


���
h � � 
 � ��� h

� ��	 � 
 RX ��� � 	 � 
 	 � 
 d
� � d�

 � h ��� 
�� � h � ��	 � 
�� RX ��� 
�
�
 �
In the frequency domain this translates to

SY � f 
� SX � f 
 �H � f 
 � 2 �
From this relationship we see that SX � f 
 must also be non-negative since if we
let H � f 
 be a narrow bandpass filter centered around some frequency f0 then we
see that the power of the process X � t 
 “which is located around frequency f0” is
proportional to SX � f0 
 .
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S � f � f f
f0

S � f ! f0 �

Figure 1.6: Modulation of a signal.

11. PASSBAND SYSTEMS

Assume we have a real valued signal s � t 
 and its Fourier transform S � f 
 . Then
we have the conjugacy constraint S � f 
  S

� ��	 f 
 . Further we know from the
modulation property that

s � t 
 e2 � j f0t � S � f 	 f0 
 �
This relationship is shown in Fig. 1.6. Define H � � f 
 as

H � � f 
 : 

��� �� 1 � f � 0 �
1
2 � f  0 �
0 � f 
 0 �

If s � t 
 is an arbitrary real-valued signal, we define ŝ � t 
 to be the signal with Fourier
transform

Ŝ � f 
 : �� 2S � f 
 H � � f 
 �
The factor � 2 ensures that s � t 
 and ŝ � t 
 have equal energy. A signal ŝ � t 
 such that
Ŝ � f 
  0 for f 
 0 is called analytic. In the time domain this relationship can be
expressed as

ŝ � t 
� s � t 
�� � 2h � � t 
 �
where h � � t 
 � H � � f 
 constitutes a Fourier transform pair. We claim that the
inverse relationship which permits us to go from ŝ � t 
 back to s � t 
 is given by

s � t 
� � 2Re � ŝ � t 
 � �
This is most easily seen from

� 2Re � ŝ � t 
 �  � 2
� ŝ � t 
 � ŝ

� � t 
�

2

 ŝ � t 
� 2
� ŝ

� � t 
� 2

�
Ŝ � f 
� 2� �
	 �

S 	 f 
 for f � 0

� Ŝ
� ��	 f 
� 2� �
	 �

S 	 f 
 for f � 0

 S � f 
 �
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s � t 
 � 2h � � t � ŝ � t 

analytic
signal

� 2Re ��� � s � t 


Figure 1.7: Relationship between s � t 
 and ŝ � t 
 .

sE � t � � 2Re � ˙�

e2 	 j f0t

f

f0 ! f0

ff

f0

s � t �

Figure 1.8: Up-conversion of a signal. The output signal s � t 
 is equal to s � t 
 � 2Re � sE � t 
 e2 � j f0t �  � 2sE � t 
 cos � f0t 
 .

We see that � 2Re � ŝ � t 
 � and s � t 
 have the same Fourier transform and are hence
identical. We summarize this observation in Fig. 1.7.

Using the above notation, the up/down-conversion of a signal can be de-
scribed in a compact form. Let sE � t 
 be a baseband signal of bandwidth W . By
this we mean that

SE � f 
  0 ��� f � � W �
The up-conversion is shown in Fig. 1.8. We multiply the signal sE � t 
 by e2 � j f0t ,
scale it by � 2 and take the real part. We can recover our original signal by per-
forming a down-conversion:

s � t 
 � ŝ � t 
 � ŝ � t 
 e � 2 � j f0t  sE � t 
 �
Note that sE � t 
 has bandwidth W whereas the up-converted signal occupies a

bandwidth of 2W . It appears that we loose a factor two in bandwidth efficiency.
But we can gain back this factor two by up-converting two real-valued baseband
signals of bandwidth W into a single bandpass signal of bandwidth 2W . Let sI � t 

and sQ � t 
 denote two real valued baseband signals of bandwidth W and define

sE � t 
 :  sI � t 
 � jsQ � t 
 �
Let

s � t 
 :  � 2Re � sE � t 
 e2 � j f0t �  � 2sI � t 
 cos � 2 � f0t 
 	 � 2sQ � t 
 sin � 2 � f0t 
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be the up-converted signal.4 We can then recover our original two signals by
performing the standard down-conversion,

s � t 
 � ŝ � t 
 � ŝ � t 
 e � 2 � j f0t  sE � t 
 �
Why is it useful to be able to translate a signal into different frequency ranges?
In this way we can perform all signal processing tasks at a convenient frequency
range (maybe baseband) and we can choose this frequency range independent
of the actual transmission band. In this way only a small part of the transmit-
ter/receiver architecture depends on the actual transmission frequency.

So far we have started with a (complex valued) baseband signal of bandwidth
W and up-converted it into a real-valued passband signal of bandwidth 2W . But
we can also reverse this process. Assume we have given a real-valued passband
signal s � t 
 of bandwidthW . Then we can define a baseband equivalent signal sE � t 

(hence the “E”), which in general is complex-valued and has bandwidth W � 2.

Below we summarize the relationships between the real-valued signal s � t 
 , its
corresponding analytic signal ŝ � t 
 and the baseband equivalent signal sE � t 
 :��� 2h � 	 t 
	 � e ! 2 � j f0t	 �

s � t 
 ŝ � t 
 sE � t 
� 2Re ��� �� 	 e2 � j f0t� 	�
FT

�
FT

�
FT

� 2H � 	 f 
	 � f � f � f0	 �
S � f 
 Ŝ � f 
 SE � f 


� 	 f � f � f0� 	

Lets assume that we transmit the passband signal s � t 
 through a passband
channel with impulse response h � t 
 . Let us denote the channel output by w � t 
 ,
i.e.,

w � t 
� s � t 
 � h � t 
 � W � f 
� S � f 
 H � f 
 �
Using above relationships we conclude that

w � t 
� s � t 
�� h � t 
 �
	 W � f 
� S � f 
 H � f 

ŵ � t 
� ŝ � t 
�� 1� 2

ĥ � t 
 ��	 Ŵ � f 
� SE � f 	 f0 
 1� 2
HE � f 	 f0 


wE � t 
� sE � t 
 � 1� 2
hE � t 
 ��	 WE � f 
� SE � f 
 1� 2

HE � f 
 � (1.13)

4Recall the following relationships:

cos � x � � e jx � e ! jx

2  sin � x � � e jx � e ! jx

2 j  e jx � cos � x � � j sin � x �  e ! jx � cos � x � � j sin � x �
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s
�
t ��� h

�
t � � Z

�
t �
� 2h � � t � ŝ � t ��� ĥ

�
t ��
2 � Ẑ

�
t �sE

�
t ��� hE

�
t ��
2 � ZE

�
t �

e � 2 � j f0t

baseband
receiver

data

Figure 1.9: Receiver for passband signal s � t 
 . Note that ZE � t 
 is complex valued
ZE � t 
  ZI � t 
 � jZQ � t 
 , where the two components are independent and each have
a two-sided power spectral density equal to N0

2 .

Now lets see how we can find a baseband equivalent form for passband Gaus-
sian noise. Assume that Z � t 
 has power spectral density equal to

SZ : 
�

N0
2 � f0 	 W 
 � f � 
 f0 � W �

0 � elsewhere �
Since Ẑ � t 
 is the result of passing Z � t 
 through a time-invariant filter we conclude
that Ẑ � t 
 is a zero-mean WSS stochastic process with power spectral density equal
to

SẐ :  SZ � � 2H � � f 
 � 2 
�

N0 � f0 	 W 
 f 
 f0 � W �
0 � elsewhere �

Now let ZE � t 
� Ẑ � t 
 e � 2 � j f0t . Then the autocorrelation of ZE � t 
 is equal to

RZE � t � s 
  ��� Ẑ � t 
 e � 2 � j f0t Ẑ
� � s 
 e2 � j f0s �

 ��� Ẑ � t 
 Ẑ � � s 
 � e � 2 � j f0 	 t � s 

 RẐ � t 	 s 
 e � 2 � j f0 	 t � s 


�
We conclude that ZE � t 
 is also WSS with power spectral density equal to

SZE � f 
  SẐ � f � f0 
�
�

N0 � 	 W 
 f 
 W �
0 � elsewhere �

Further, one can show that ZI � t 
 and ZQ � t 
 , the real and imaginary parts of ZE � t 
 ,
are uncorrelated and have a power spectral density of

SZI � f 
  SZQ � f 
�
�

N0
2 � 	 W 
 f 
 W �

0 � elsewhere �
Let sE � t 
 be the (complex) baseband signal and s � t 
 the corresponding pass-

band signal. The receiver for s � t 
 looks as in Fig. 1.9. The channel seen from the
up-converter input to the down-converted output is as shown in Fig. 1.10.
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sE � t 
 1�
2

hE
�
t �

ZE � t 


wE � t 
 � ZE � t 


Figure 1.10: Channel seen from the up-converter input to the down-converted
output. All quantities are complex valued.

12. JUST ENOUGH ABOUT FORMAL POWER SUMS

In case you did not feel comfortable about the manipulations above (in particular
about the division in the very last step), here are some explanations:

Given two formal power sums x � D 
 :  ∑n � 0 xnDn and y � D 
 :  ∑n � 0 ynDn we
can define their addition in the following natural way

x � D 
 � y � D 
 :  ∑
n � 0

� xn � yn 
 Dn

�

In a similar way we can define their multiplication by

x � D 
 � y � D 
 :  ∑
n � 0



n

∑
i � 0

xiyn � i
� Dn �

which is the rule familiar from polynomial multiplication. Note that this is well
defined, since in order to compute the n-th coefficient of the product we only need
to perform a finite number of operations.

We next look if it is possible to define division. Recall that over the reals we
say that y  1

x , x � 0, if z :  xy  1, and we say that y is the multiplicative inverse
of x. Dividing by x is then the same as multiplying by y. We will proceed along
the same lines for formal power sums. Consider the formal power sum x � D 
 . We
want to find the formal power sum y � D 
 such that z � D 
 :  x � D 
 y � D 
� 1. We will
then say that y � D 
 is the multiplicative inverse of x � D 
 and we can then divide by
x � D 
 by multiplying with y � D 
 . Using the multiplication rule from above, we get
the following set of equations:

1  z0  x0y0 �

0  zi 
i

∑
j � 0

y jxi � j � i � 1 �

We see that this set of equations has a solution (and that this solution is unique) if
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and only if x0 � 0. In this case we get

y0  1
x0
�

yi  1
x0

i � 1

∑
j � 0

y jxi � j � i � 1 �

Since again the evaluation of each coefficient yi only involves a finite number of
algebraic operations and only makes use of the values of y j, j 
 i, this gives rise
to a well-defined formal power sums. In summary, a formal power sums x � D 
 has
a multiplicative inverse iff x0 � 0. The above procedure of finding 1

x 	 D 
 is also
called long division.

Example 5. [Inverse of 1 � D] Consider the example x � D 
  1 � D. Since x0 � 0,
1

1 � D exists. We get y0  1
x0
 1, y1  1

x0
y0x1  1, y2  1

x0
� y0x2 � y1x1 
� y1  1,

and, in general, yi  1
x0

∑i � 1
j � 0 y jxi � j  1

x0
yi � 1x1  yi � 1  1. Therefore y � D 
 

∑∞
n � 0 Di.5

HISTORICAL NOTES

EXERCISES

1.1 (Transformation of Gaussian Random Variables). Let Z  � Z1 � ����� � Zn 
 de-
note a jointly Gaussian vector with independent components with zero mean and
each with variance � 2, i.e., we have

fZ � z 
� 1

� 2 ��� 2 
 n � 2 e �
 
z
 2

2 " 2

Let ��� 1 � ����� �
�

n � be any basis for � n, i.e., an orthonormal set and let W  � W1 � ����� � Wn 

denote a random vector whose components are the projections of Z onto this ba-
sis, i.e, Wi 

�
Z � � i � . Show that W has the same distribution as Z, i.e., W is a

jointly Gaussian vector with independent components with zero mean and each
with variance � 2.

1.2 (Convexity of Voronoi Regions). Recall that for the Gaussian hypothesis
testing case with uniform priors the decision regions are equal to the Voronoi
regions. Prove that in this case the decision regions are convex regions, i.e., if
x1 � x2 are elements of the decision region associated to hypothesis i then so is� x1 � � 1 	 � 
 x2, where � � � 0 � 1 � .

5The resemblance to the summation formula ∑∞
i � 0 xi � 1

1 ! x , where � x ��� 1, is not a coincidence. In
general, as a rule of thumb any identity which is valid for Taylor series and which can be meaningfully
interpreted in the realm of formal power series will still be valid if considered as an identity of formal
power series.
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1.3 (8-PSK Constellation). Consider the Gaussian hypothesis testing problem

with H
� �

a0 ������� � a7 � , ai  e
2 � j

8 i, i  0 ��������� 7, i.e., the hypotheses form an 8-PSK
constellation and the observation assuming that the correct hypothesis is i is equal
to Y  ai � Z, Z  � Z1 � Z2 
 , Zk � N � 0 � � 2 
 and Z1 is independent of Z2. What is
the exact probability of error of the MAP decision rule and what does the union
bound give?

1.4. Consider again a Gaussian hypothesis testing problem with m  2. Under
hypothesis H  0 the transmitted point is equally likely to be a00  � 1 � 1 
 or a01 
� 	 1 ��	 1 
 , whereas under hypothesis H  1 the transmitted point is equally likely
to be a10 ���	 1 � 1 
 or a11 �� 1 ��	 1 
 . Under the assumption of uniform priors,
write down the formula for the MAP decision rule and determine geometrically
the decision regions.

1.5 (Q-function). Show that for x � 0, Q � x 
 � e � x2
2 . Can you show that for x � 0,

Q � x 
 � 1� 2 � x2 e � x2
2 ?

1.6. Let Z � t 
 be a real-valued Gaussian process with double-sided power spectral
density equal to N0

2 . Let � 1 � t 
 and �
2 � t 
 be two orthonormal functions and for

k  0 � 1 define the random variables Zk 
� ∞

� ∞ Z � t 
 � k � t 
 dt. What is the distribution
of � Z1 � Z2 
 ?
1.7. In this exercise we continue our review of what happens when stationary
stochastic processes are filtered. Let X � t 
 and U � t 
 denote two stochastic pro-
cesses and let Y � t 
 and V � t 
 be the result of passing X � t 
 respectivelyU � t 
 through
linear time invariant filters with impulse response h � t 
 and g � t 
 , respectively. For
any pair � X � U 
 of stochastic processes define the cross-correlation as

RXU � t1 � t2 
�	� � X � t1 
 U � � t2 
 � �
We say that the pair � X � U 
 is jointly wide sense stationary if each of them is wide
sense stationary and if RXU � t1 � t2 
 is a function of the time difference only. In
this case we define a cross-power spectrum as the Fourier transform of the cross-
correlation function.

Show that if � X � U 
 are jointly wide sense stationary then so are � Y � V 
 and
that

SYV � f 
� SXV � f 
 H � f 
 G
� � f 
 �

1.8. Show that the cross-correlation function RXU ��� 
 has symmetry

RXU � � 
� R
�

UX � 	 � 

1.9. Let Z � t 
 be a circularly symmetric stationary zero-mean Gaussian random
procress and define Y � t 
  e2 � f0t Z � t 
 . Show that Y � t 
 is also circularly symmetric
and stationary.
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1.10. In this problem we will be concerned with the design of signal points and in
particular the tradeoff between error probability, average energy per signal point
and number of signal points.

Consider a grid of points in two dimensions as shown below (only a finite
portion is shown).

R1

R2

R3

2d

2d

The points have the form � d � 2d j � d � 2dk 
 , j � k � � , i.e., their vertical and hori-
zontal spacing is 2d and they are offset from the origin by d in both the vertical and
horizontal direction. Let SR1 denote the 4 points which are closest to the origin,
i.e., the set of points which lie within the disc of radius R1. In the same manner
let SR2 (SR3) denote the set of 16 (32) points which are closest to the origin, i.e.,
the set of points within distance R2 (R3) from the origin.

(a) For SR1 and SR2 determine the average energy of the constellation as a func-
tion of d, assuming that all points are equally likely.

Consider now the general problem. Let SR denote the set of points which lie within
radius R of the origin. We would like to investigate how the number of signal
points and the average energy scale with R. To determine these parameters exactly
is a difficult problem but we can get a good estimate of these quantities by making
the following continuous approximation. We will assume that the number of grid
points which have modulus (norm) between r and r ��� r is equal to �

2d2 r � r. [We
get this approximation by assuming that each grid point “uses” an associated area
of � 2d 
 2 (one square in the figure) and by recalling that the area of an annular
region of radius r and “width” � r is equal to 2 � r � r.]

(b) Using this approximation, show that the number of grid points within radius
R is equal to � R2

4d2 and that the average energy of all grid points within radius

R is equal to R2 � 2, assuming that all points are equally likely.
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(c) Compare these results with your results in (a) assuming that R1  2d and
R2  � 20d.

(d) According to this approximation, by how much do we have to scale R in
order to double the number of points, i.e., in order to transmit one extra bit?

Assume now that SR are the signal points for a Gaussian hypothesis testing prob-
lem where � 2 is the variance of the noise per dimension. Observe that, under the
assumption that d� is large, an approximate expression for the error probability P
is given by P � 4Q � d� 
 which is independent of the chosen radius R.

(e) According to this approximation. By how much do we have to scale the
energy in order to transmit one extra bit at roughly the same probability of
error.

1.11. [Partial Fraction Expansion] Prove the following assertion. The partial frac-
tion expansion is particularly simply when the rational function has only simple
poles. Assume we have given

H � z 
 :  F � z 

G � z 
 

F � z 

∏k � z 	 zk 
 �

where the degree of F � z 
 is less than the degree of G � z 
 and where are poles zk

are distinct. The claim is that in this case the partial fraction expansion of H � z 
 is
given by

H � z 
� ∑
k

F � zk 

G � � zk 


1
z 	 zk

 ∑
k

F � zk 

G � � zk 


1
z

1
1 	 zk

z

Further, we claim that the causal time sequence which possesses this z-transform
is

hn � 1  ∑
k � 0

F � zk 

G � � zk 
 z

n
k

What is the the corresponding anticausal time serie? What changes if the degree
of F � z 
 is larger or equal to the degree of G � z 
 ?
1.12. In this example we will investigate some basic properties of formal power
sums in some more detail. Consider the set of all formal power sums with coef-
ficients in the set F . In class we looked at the case where F  � 0 � 1 � , the field of
two elements. We have seen that we can endow the set of such power sums with
some algebraic structure. In particular, we can add, subtract, multiply and for
some elements we can even define a division. The set of all formal power sums
over F is usually denoted by F � �D � � and is called the ring of formal power sums.
As a general rule, in F � �D � � all those operations are meaningful which require for
the determination of each coefficient of the output only a finite number of (alge-
braic) operations. We saw how addition, multiplication, and the determination of
the multiplicative inverse (if it exists) of a given element all fall in this category.
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We will now discuss some more operations which we can perform on elements of
F � �D � � , we will see how we can use formal powers sums as generating functions to
solve problems in the area of enumerative combinatorics and we will investigate
the relationship between formal power sums and Taylor series.

1. Assume we are given a sequence � xi � i � 0. We then say that x � D 
 :  ∑∞
i � 0 xiDi

is the generating function of � xi � i � 0 and we will write x � D 
 � �
xi � i � 0.

(a) If x � D 
 � �
xi � i � 0 then what are the generating function of � xi � 1 � i � 0

and of � xi � 2 � i � 0?

(b) Define the derivative of a formal power sum x � D 
 :  ∑∞
i � 0 xiDi to

be x � � D 
 :  ∑∞
i � 0 ixiDi � 1. If x � D 
 � � xi � i � 0 then what is the formal

power sum corresponding to � ixi � i � 0?

2. Let f � z 
 be a function such that for some region of convergence f � z 
 has
the Taylor series expansion f � z 
  ∑∞

i � 0 fizi. Given a formal power series
x � D 
 :  ∑∞

i � 0 fiDi we will then also write x � D 
� f � D 
 . Using this notation

what would you write for x1 � D 
 :  ∑∞
i � 0

Di

i! and for x2 � D 
 :  ∑∞
i � 0 ��	 1 
 i D2i	 2i 
 ! ?

How about x �1 � D 
 and x �2 � D 
 ? Any comments?

3. Let
�  � and consider the recurrence ai � 2  ai � 1 � ai, � i � 0;a0  a1  1 
 .

Define the formal power sum a � D 
 :  ∑∞
i � 0 aiDi and use it to solve this

recursion. You hopefully got an answer of the form a � D 
  p 	 D 

q 	 D 
 , where

p � D 
 � q � D 
 � F �D � . Find now a0 � a1 � a2 and a3 by formally finding the first
four coefficients of the resulting power sum. Note: Do not use the recur-
sion for that, start with a � D 
 and use only algebraic operations. Now use a
partial fraction expansion to write a � D 
 as a sum of rational terms each of
which has only one pole. Can this procedure be again defined in a purely
formal way, i.e., only using algebraic operations but making no use of any
analytic properties? Finally, use this partial fraction expansion to give an
expression of the coefficients ai in a somewhat more explicit form.

4. Let
�  � and consider the recurrence � n � 1 
 an � 1  3an � 1, � n � 0;a0 

1 
 . Define the formal power sum a � D 
 :  ∑∞
i � 0 aiDi and use it to solve this

recursion.

5. Let x � D 
 � y � D 
 � F � �D � � . We are interested in compositions of formal power
sums. Can you find a meaningful definition for the expression y � x � D 
�
 ?
Does such an expression always make sense. Using your findings: Does
eeD � 1 have a well defined formal power series? How about eeD

?

1.13. Define the two formal power sums x � D 
 :  ∑∞
i � 0

1
i! Di and y � D 
 :  	 ∑∞

i � 1
	 � 1 
 i

i Di,
where all coefficients are over � .

1. Do 1
x 	 D 
 and x � y � D 
�
 exist? If so, determine their first three coefficients.
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2. Show that x � � D 
  x � D 
 and y � � D 
  1
1 � D , where all operations are inter-

preted formally. [Recall that the formal derivative of a formal power sum
z � D 
 :  ∑∞

i � 0 ziDi is equal to ∑∞
i � 0 iziDi � 1  ∑∞

i � 0 � i � 1 
 zi � 1Di.]

3. Find functions f � D 
 and g � D 
 such that x � D 
 and y � D 
 are their respective
Taylor series around zero. [HINT: You might recognize the functions f � D 

and g � D 
 from their respective Taylor series ∑∞

i � 0
1
i! Di and 	 ∑∞

i � 1
	 � 1 
 i

i Di

directly. If not, observe from above that f � D 
 and g � D 
 fulfil the equations
f � � D 
� f � D 
 and g � � D 
� 1

1 � D .]

4. Use the above functions to write down 1
x 	 D 
 and x � y � D 
�
 explicitly as formal

power sums.

1.14. In this exercise we will review the Euclidean algorithm, an efficient algo-
rithm to calculate the greatest common divisor. Recall that gcd � a � b 
 , where a and
b are integers is the largest integer c such that c divides a and c divides b. We have
the following elementary properties of the gcd.

Fact 1. [Basic properties of the gcd]

(i) gcd � a � b 
� gcd � b � a 
 ,
(ii) gcd � a � 0 
  a.

(iii) gcd � a � b 
  gcd � a � b � ca 
 .

This gives us a way to calculate the gcd by choosing c so that gcd � a � b �
ca 
 is “simpler” than gcd � a � b 
 . It is common to choose c in such a way that
b � ca is as small as possible. In particular assume that � b � � � a � and let c be
an integer such that b  ca � r with the remainder r such that 0 � r 
 a. Then
gcd � a � b 
  gcd � a � b 	 ca 
  gcd � a � r 
 . Now repeat this procedure until one of
the arguments is zero. The remaining non-zero argument is then the sought after
greatest common divisor. Use this algorithm to calculate the greatest common
divisor of 1573 and 308. Can you extend this algorithm to find integers a and b
such that gcd � 1573 � 308 
  a1573 � b308?

Now note that the same algorithm works also for polynomials. Look at the set
of polynomials over some field F (think of F as the reals or complex numbers or
the binary field). For polynomials, the degree plays the role of the absolute value
of integers. Polynomials of degree zero are called the scalars. A polynomial is
called monic if its leading coefficient is one. As in the case of integers we can
divide, i.e., given two polynomials a � D 
 and b � D 
 with dega � deg � b 
 we can
find unique polynomials c � D 
 and r � D 
 such that a � x 
  b � D 
 c � D 
 � r � D 
 with
deg � D 
 
 deg � b 
 . A polynomial which can not be written as the product of two
other polynomials (of degree at least one) is called irreducible. An irreducible
polynomial is the equivalent to a prime in the realm of integers. Be aware that
irreducibility depends on the field F over which we regard the polynomial. E.g.,
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1 � x2 is irreducible over the reals but does factor into two linear terms over the
complex numbers. Then, as for integers, we have a unique factorization theo-
rem for polynomial, i.e., a given polynomial can be factored in a unique way into
irreducible monic factors and a scalar. The greatest common division of two poly-
nomials a � D 
 and b � D 
 is defined to be that unique monic polynomial c � D 
 which
divides both polynomials and has the largest degree of all such polynomials. The
Euclidean algorithm can be extended in a straightforward way to the setting of
polynomials to determine the gcd in an efficient way.

Use the Euclidean algorithm to calculate the greatest common divisor of the
following two pairs of polynomials over the reals: � x4 	 x3 � x 	 1 � x2 	 x � 1 
 and
� x4 	 x2 � x 	 1 � x3 	 x2 � 1 
 .
1.15. [Wilf’s Snake Oil Method] The following exercise deals with a simple
method that can often help you do find explicit expressions for seamingly complex
sums. Consider the sum

f � n 
� ∑
k � 0

�
k

n 	 k �
We want to find an “explicit” formula for f � n 
 . The trick is to consider the gener-
ating function F � x 
 :  ∑n f � n 
 xn instead, i.e., rather than asking for the solution
for a particular n we would like to solve the problem for all n simultaneously!
This seems to make the problem if anything harder not easier. But now we have
a double sum and as we will see, by exchanging the order of summation, we can
actually solve the problem.

F � x 
  ∑
n � 0

f � n 
 xn

 ∑
n � 0



∑
k � 0

�
k

n 	 k � � xn

 ∑
k � 0

�
∑
n

�
k

n 	 k � xn �
 ∑

k � 0

�
xk ∑

n

�
k

n 	 k � xn � k �
 ∑

k � 0

�
xk ∑

m

�
k
m � xm �

 ∑
k � 0

xk � 1 � x 
 k

 1
1 	 x 	 x2

 1
x � 	 x �

�
1

1 	 x � x
	 1

1 	 x � x �
 ∑

n � 0

1� 5

 xn� 	 xn

� � xn �
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where we have used the binomial identity and a standard partial fraction expan-
sion and where we defined x �  � 1 � � 5 
 � 2. We therefore have our sought after
answer

∑
k � 0

�
k

n 	 k �  1� 5

 xn� 	 xn

� � �
Apply the same trick to the scary looking summation

f � n � m 
 :  ∑
k � 0

�
n � k

m � 2k � � 2k
k � � 	 1 
 k

k � 1
� m � n � 0 �

Hints: Consider m fixed and sum again over n! You might find it helpful to know
that

∑
n � 0

�
n
k � xn  xk

� 1 	 x 
 k � 1

and that

∑
n � 0

1
n � 1

�
2n
n � xn  1

2x
� 1 	 � 1 	 4x 
 �
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2

TRANSMISSION OVER LINEAR

TIME-INVARIANT CHANNELS

So far we know how to transmit information over an ideal passband/baseband
channel with AWGN. In this chapter we will consider a more general model. We
will consider pulse amplitude modulated signals transmitted over a linear time-
invariant channel with AWGN.

1. MAXIMUM LIKELIHOOD SEQUENCE ESTIMATOR: VITERBI

ALGORITHM

Let

xE � t 
�
N � 1

∑
n � 0

xn
� � t 	 nT 
 � (2.1)

be the pulse amplitude modulated baseband signal, where xn takes elements from
some finite (complex-valued) set X . Let hE � t 
 denote the baseband equivalent
channel impulse response. Then the received signal is given by (see (1.13))

yE � t 
� xE � t 
�� 1� 2
hE � t 
 � Z � t 
�

N � 1

∑
n � 0

xngE � t 	 nT 
 � Z � t 
 � (2.2)

where gE � t 
 :  � � t 
 � 1� 2
hE � t 
 , and where Z � t 
 is a complex circularly-symmetric

Gaussian process with power spectral density equal to N0. Note that this is again
a pulse amplitude modulated signal but that the pulse shape now incorporates also
the effect of the channel. Since the channel is usually not under the control of the
system designer, the pulse gE � t 
 will, in general, not satisfy the Nyquist criterion.
We will therefore have intersymbol-interference (ISI).

35
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Although we assume that the channel is not known for the design phase of
the system, we will assume that the receiver knows the channel (perfectly). We
will give a justification of this assumption at some later point where we will show
how to perform the necessary channel estimation task.

We see from (2.1) that all possible transmitted points lie in some finite di-
mensional subspace. We can find a basis for this subspace by applying a Gram-
Schmidt procedure to the set � gE � t 
 � ����� � gE � t 	 � N 	 1 
 T 
 � . Under the assump-
tion of uniform priors we now know that the optimal receiver can first project
the received signal yE � t 
 onto this subspace, call the result ỹE � t 
 , and then find
that point x̃E � t 
 :  ∑N � 1

n � 1 x̃ngE � t 	 nT 
 out of all �X � N such points which is closest
to ỹE � t 
 , see (1.1). For any two (complex-valued) functions a � t 
 and b � t 
 define�
a � t 
 � b � t 
 � :  � ∞

� ∞ a � t 
 b � � t 
 dt. Since
�
x̃E � t 
 	 ỹE � t 


� 2  �
x̃E � t 


� 2 �
�
ỹE � t 


� 2 	 �
x̃E � t 
 � ỹE � t 
 � 	 �

ỹE � t 
 � x̃E � t 
 �
 �

x̃E � t 

� 2 �

�
ỹE � t 


� 2 	 2Re
�
ỹE � t 
 � x̃E � t 
 � �

and since
�
ỹE � t 


� 2 is common to all such terms, we see that rather than minimiz-
ing the Euclidean distance we can maximize the expression

2Re
�
ỹE � t 
 � x̃E � t 
 � 	 �

x̃E � t 

� 2 �

see (1.2). But
�
ỹE � t 
 � x̃E � t 
 �  �

yE � t 
 � x̃E � t 
 � , so that we can maximize the quantity

2Re
�
yE � t 
 � x̃E � t 
 � 	 �

x̃E � t 

� 2

instead. (Why did we bother to introduce the projection ỹE � t 
 ?) Recall that we
have in total �X � N signals. Therefore at first it appears that we need to perform
�X � N inner products. This would of course we prohibitively complex. As we will
see now, we can do much better.

Explicitly, we have

2Re
�
yE � t 
 � x̃E � t 
 � 	 �

x̃E � t 

� 2

 2Re

� �
yE � t 


N � 1

∑
n � 0

x̃
�
ng

�
E � t 	 nT 
 dt

�
	
� N � 1

∑
n � 0

N � 1

∑
m � 0

x̃
�
nx̃mg

�
E � t 	 nT 
 gE � t 	 mT 
 dt

 2Re

�
N � 1

∑
n � 0

x̃
�
n

�
yE � t 
 g

�
E � t 	 nT 
 dt

�
	

N � 1

∑
n � 0

N � 1

∑
m � 0

x̃
�
nx̃m

�
g
�
E � t 	 nT 
 gE � t 	 mT 
 dt

 2Re

�
N � 1

∑
n � 0

x̃
�
nyn

�
	

N � 1

∑
n � 0

N � 1

∑
m � 0

x̃
�
nx̃mRg � n 	 m 
 �

where
Rg � k 
 : 

�
gE � t 
 g

�
E � t 	 kT 
 dt �

and where we defined

yn : 
�

yE � t 
 g
�
E � t 	 nT 
 dt �
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Note that
Rg � 	 k 
� R

�
g � k 
 �

Assume now that gE � t 
 has finite support, i.e., gE � t 
  0 for t � LT so that Rg � k 
 
0 for � k � � L. In this case we have

 2Re

�
N � 1

∑
n � 0

x̃
�
nyn

�
	

N � 1

∑
n � 0

N � 1

∑
m � 0

x̃
�
nx̃mRg � n 	 m 
� �
	 �

real valued: conjugates m � n

 2Re

�
N � 1

∑
n � 0

x̃
�
nyn

�
	 Rg � 0 


N � 1

∑
n � 0

x
�
nxn 	 2Re

�
N � 1

∑
n � 0

x̃
�
n ∑

m � n
x̃mRg � n 	 m 


�

 2Re

�
N � 1

∑
n � 0

x̃
�
nyn

�
	 Rg � 0 


N � 1

∑
n � 0

x
�
nxn 	 2Re

�
N � 1

∑
n � 0

x̃
�
n

L � 1

∑
m � 1

Rg � m 
 x̃n � m

�


N � 1

∑
n � 0

2Re

�
x̃
�
n



yn 	 1

2
Rg � 0 
 x̃n 	

L � 1

∑
m � 1

Rg � m 
 x̃n � m
� �

�

where we assumed that we defined x̃n :  0 for n 
 0 and n � N. So we see that the
set of inner products � y0 � ����� � yN � 1 � constitutes a sufficient statistic. We will now
see that we can employ the Viterbi algorithm which you encountered already in
the decoding of convolutional codes to perform this maximization in an efficient
manner.

We need to find

argmaxx̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

2Re

�
x̃
�
n



yn 	 1

2
Rg � 0 
 x̃n 	

L � 1

∑
m � 1

R � m 
 x̃n � m
� �

 argmaxx̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

m � yn; x̃n; x̃n � L � 1 � ����� � x̃n � 1 


 argmaxx̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

m � yn; x̃n; � n 
 �

where we defined � n :  � x̃n � L � 1 � ����� � x̃n � 1 
 . We call � n the state at time n. Note
that the metric is the sum of N parts, where the n-th part depends on the n-th
received value yn, the n-th conjectured transmitted value x̃n, as well as the state at
time n.

Consider first the case L  1. In this case the state is empty and the individual
terms have the form m � yn; x̃n 
 . Therefore

max
x̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

m � yn; x̃n 
�
N � 1

∑
n � 0

max
x̃n

m � yn; x̃n 
 �
In words, the optimal detector can proceed symbol-by-symbol wise. This is of
course expected, since in this case we do not have inter-symbol-interference.
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Assume now that L � 1, so that the state is now non-trivial. In this case a
symbol-by-symbol optimization is not optimal. But for any 0 � l � N 	 1 we
have:

maxx̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

m � yn; x̃n; � n 


 max� l �
� �

max
x̃0 � 	 	 	 � x̃l ! 1: � l �

� l � 1

∑
n � 0

m � yn; x̃n; � n 
 � max
x̃l � 	 	 	 � x̃N ! 1: � l �

� N � 1

∑
n � l

m � yn; x̃n; � n 

�

In words, conditioned that we pass through a certain state at time l the “future”
and “past” are independent. Even a single application of this fact results in a
large savings. Assume we pick l  N � 2. In this case for each possible state
the evaluation of the above maximization has complexity 2 �X � N � 2 so that the total
complexity is roughly equal to 2 �X � N � 2 � L � 1. Applying this trick repeatedly results
in the Viterbi algorithm. The Viterbi algorithm has a nice graphical representation
in terms of the so-called trellis diagram. All these concepts are probably most
easily explained in terms of an example.

Example 6. Consider antipodal transmission and assume that

Rg � 0 
� 1 � Rg � 1 
� 1
2
� Rg � k 
� 0 � k � 2 �

Let N  5 and assume that the received vector is equal to

� y0 � y1 � y2 � y3 � y4 
� � 0 � 7 ��	 2 � 3 ��	 0 � 5 � 0 � 4 � 2 � 5 
 �
Recall that in general the state at time n was defined as � n :  � x̃n � L � 1 � ����� � x̃n � 1 

so that for our case we have � n  � x̃n � 1 
 . Note that for each possible sequence
x̃0 � ����� � x̃N � 1 there is a unique sequence � 1 � ����� � � N  � x̃0 
 � ����� � � x̃N � 1 
 and vice
versa. Consider the following graph, usually referred to as the trellis-diagram.
Nodes correspond to states and edges correspond to transmitted and received val-

0 � 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

y0; x̃0 y1; x̃1 y2; x̃2 y3; x̃3 y4; x̃4
�

0
�

1
�

2
�

3
�

4
�

5

x̃0 � � 1

x̃0 � �
1

Figure 2.1: The trellis diagram for antipodal transmission, L  2 and N  5.

ues. The leftmost node corresponds to the initial state which for our case is equal
to zero since we assumed that xn  0 for n 
 0. The two nodes at time one corre-
spond to the two possible states after the first bit has been transmitted, namely the
states � 1 and 	 1. The two edges connecting the initial state to these two states at
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time one correspond to the two possible hypothesis, namely that x̃0  �
1. Note

that each possible state sequence (and hence each possible sequence of transmitted
bits) corresponds in a unique way to a single path through this trellis.

We want to perform the maximization

maxx̃0 � 	 	 	 � x̃N ! 1

N � 1

∑
n � 0

m � yn; x̃n; � n 
 �
Look at the first term, i.e., m � y0; x̃0; � 0 
 . Since � 0  � 0 
 we have

m � y0; x̃0; � 0 
�
�

2 � 1 � � 0 � 7 	
1
2 � 1 	 1

2 � 0 �  0 � 4 � x̃0  � 1 �
2 � � 	 1 
 � � 0 � 7 	

1
2 � ��	 1 
 	 1

2 � 0 �  	 2 � 4 � x̃0  	 1 �
Assume now we label the edges emanating from the initial states with m � y0; x̃0; � 0 
 .
Assume further, that we label states with the accumulated metrics, where the ac-
cumulation is over the labels of the edges along the (shortest) path from the initial
state. More precisely, we label the single node corresponding to � 0  � 0 
 with
zero, we label the node corresponding to � 1  � 1 with m � y0; x̃0  � 1; � 0 
� 0 � 4and we label the node corresponding to � 1  	 1 with m � y0; x̃0  	 1; � 0 
  	 2 � 4.

0 � 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

y0 � 0 � 7
0 � 4

�
2 � 4

0 0 � 4

�
2 � 4

As a next step determine m � y1; x̃1; � 1 
 . We get

m � y1; x̃1; � 1 
 

����� ����
2 � 1 � � 	 2 � 3 	

1
2 � 1 	 1

2 � 1 �  	 6 � 6 � x̃1  � 1; � 1  � � 1 

2 � � 	 1 
 � � 	 2 � 3 	

1
2 � ��	 1 
 	 1

2 � 1 �  4 � 6 � x̃1  	 1; � 1  � � 1 
 �
2 � 1 � � 	 2 � 3 	

1
2 � 1 	 1

2 � � 	 1 
 �  	 4 � 6 � x̃1  � 1; � 1  ��	 1 

2 � � 	 1 
 � � 	 2 � 3 	

1
2 � ��	 1 
 	 1

2 � ��	 1 
��  2 � 6 � x̃1  	 1; � 1  ��	 1 
 �
Adding these edge labels to our trellis we arrive at the following picture.

0 � 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

y0 � 0 � 7 y1 � �
2 � 3

0 � 4

�
2 � 4

0 0 � 4

�
2 � 4

�
6 � 6

2 � 6
4 � 6

�
4 � 6

?

?

We now get to the crucial point of the Viterbi algorithm. Note that to each of
the (two) states at time two there are two distinct paths. E.g., to the state � 2  � 1
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we arrive from the initial state by either the hypothesis x̃0  � 1 � x̃1  � 1 or by the
hypothesis x̃0  	 1 � x̃1  � 1. The first path, call it �

1, has an accumulated metric
of m � y0; x̃0  � 1; � 0  � 0 
�
 � m � y1; x̃1  � 1; � 1  � � 1 
�
  	 6 � 2 the second path,
call it �

2, has an accumulated metric of m � y0; x̃0  	 1; � 0  � 0 
�
 � m � y1; x̃1 
� 1; � 1  � 	 1 
�
  	 7 � 0. We can now argue as follows: any complete path �

through the trellis which passes through state � 2  � � 1 
 must have an initial por-
tion equal either to �

1 or �
2. The accumulated metric of this path is composed of

the metric of the initial segment plus the metric of the remaining segment. But
this additional term does not depend on the initial segment given that we pass
through the said state! We conclude that the optimal path, if it passes through
state � 2  � � 1 
 , must have initial segment �

1. Therefore we can label � 2  � � 1 

with 	 6 � 2. Note that this label is equal to the label of � 1  � � 1 
 plus the edge
which connects � 1  � � 1 
 to � 2  � � 1 
 . Continuing this procedure we arrive at
the following picture.

0 � 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

� 1

�
1

y0 � 0 � 7 y1 � �
2 � 3

0 � 4

�
2 � 4

0 0 � 4

�
2 � 4

2 � 6
4 � 6

�
4 � 6�

6 � 6

5 � 0

�
6 � 2

�
1 � 0
1 � 0

�
1 � 0�

3 � 0

4 � 0

4 � 0

�
2 � 8�

0 � 8

0 � 8�
1 � 2

3 � 2

4 � 8

�
7 � 0�

5 � 0

5 � 0
3 � 0

�
0 � 2

8 � 2

By tracing back the surviving path we can read off the sequence x̃0 � ����� � x̃N � 1

which is closest to the received point. We get in our case the estimated sequence
� 1 	 1 � 1 	 1 � 1.

2. THE EQUIVALENT DISCRETE TIME CHANNEL

We have seen from the previous example that the samples y0 � ����� � yN � 1, where
yn 

�
y � t 
 g �E � t 	 nT 
 dt, constitute a sufficient statistic, i.e., that we can make an

optimal decision based solely on these quantities. Therefore, rather than looking
at the continuous time channel

yE � t 
�
N � 1

∑
n � 0

xngE � t 	 nT 
 � Z � t 
 �

we can focus on the equivalent discrete time channel

yn  ∑
k

Rg � k 
 xn � k � zn � (2.3)
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where zn :  �
Z � t 
 g �E � t 	 nT 
 dt. Note, however that the noise is correlated. We

have

Rz � k 
  � � zn z
�
n � k �

 �
� � �

Z � t 
 g �E � t 	 nT 
 dt � � �
Z
� � � 
 gE ��� 	 � n 	 k 
 T 
 d � � �


� �

g
�
E � t 	 nT 
 gE ��� 	 � n 	 k 
 T 
 � � Z � t 
 Z � � � 
 � dtd �


� �

g
�
E � t 	 nT 
 gE ��� 	 � n 	 k 
 T 
 N0

� � t 	�� 
 dtd �
 N0

�
g
�
E � t 	 nT 
 gE � t 	 � n 	 k 
 T 
 dt

 N0

�
gE � t 
 g

�
E � t 	 kT 
 dt

 N0Rg � k 
 �

2.1 THE WHITENING FILTER

It is much more convenient to deal with white noise. We will therefore now see
how we can filter (2.3) such that the resulting signal has a noise component which
is white.

Let’s first recall what happens if we send a discrete time WSS process zn

through a filter with impulse response hn. Define

Rz � k 
 : 	� � zn z
�
n � k � �

and let wn be the output of the filter, i.e.,

wn :  ∑
m

hmzn � m �
Then we have

Rw � k 
 :  � �wn w
�
n � k �

 �
� �

∑
m

hmzn � m �


∑

l

h
�
l z
�
n � k � l

���
 ∑

m
∑

l

hmh
�
l � � zn � m z

�
n � k � l �

 ∑
m

∑
l

hmh
�
l Rz � k 	 m � l 


 ∑
m

∑
l

hmh
�
� lRz � k 	 m 	 l 


 ∑
m

hm ∑
l


 h � � lRz ��� k 	 m 
 	 l 
 �
 
 hn � h

�
� n � Rz � n 
 � � k 
 � (2.4)
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As in the case of continuous processes, we can define the spectrum of a dis-
crete time WSS process as the (z or Fourier) transform of its autocorrelation func-
tion. From Appendix 5.1 we get

S � z 
 :  ∑
k

R � k 
 z � k � S � e2 � j f 
 :  ∑
k

R � k 
 z � k � z � e2 � j f � R � k 
 
� 1

0
S � e2 � j f 
 e2 � j f kd f �

Recall that the convolution of two time domain signals corresponds to the multi-
plication of their respective transforms (z-Transform or DTFT). Therefore we get
from (2.4) the relationships

Sw � z 
� H � z 
 H � � 1 � z � 
 Sz � z 
 � Sw � e2 � j f 
� H � e2 � j f 
 H � � e2 � j f 
 Sz � e2 � j f 
 � (2.5)

Assume now that Rz � k 
  0 for k � L and that Rz � L 	 1 
 � 0. Consider the
corresponding spectrum Sz � z 
 ,1

Sz � z 
�
L � 1

∑
n � � 	 L � 1 
 Rz � k 
 z � n

�

Note that p � � z 
 :  Sz � z 
 z 	 L � 1 
 is a polynomial in z of degree exactly 2 � L 	 1 
 . Fur-
ther, since Rz � k 
� R

�
z � 	 k 
 it follows from the conjugacy rule of the z-transform,

see (1.3), that Sz � z 
� S
�
z � 1 � z � 
 . We conclude that the 2 � L 	 1 
 roots of Sz � z 
 have

the symmetry that if � is a root then so is 1 ��� � .2 We say that � and 1 ��� � are
conjugate-symmetric. This symmetry relationship is shown in Fig. B.1. We claim

�
1 � ���

1

j

Figure 2.2: A conjugate-symmetric pair � and 1 ��� � .
that Sz � z 
 can be factored as

Sz � z 
� F � z 
 F � � 1 � z � 
 �
where F � z 
 is a polynomial in z � 1. To see this claim note that p � � z 
 has only
non-zero roots and that any non-zero root of p � � z 
 is also a root of Sz � z 
 . Since

1This is an unfortunate double use of symbols: z here denotes the random variable as well as the
symbol for the z-Transform!

2 � L � 1 � out of the 2 � L � 1 � poles are at z � 0 and the remaining ones are at z � ∞.
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p � � z 
 is a polynomial in z of degree 2 � L 	 1 
 with conjugate roots it follows that
it has a factorization of the form

p � � z 
� A
L � 1

∏
i � 1
� 1 	 1

� i
z 
 � z 	 1

� �i 
 �
Therefore

Sz � z 
� p � � z 

z � 	 L � 1 
  A

L � 1

∏
i � 1
� 1 	 1

� i
z 
 � 1 	 1

� �i z � 1 
 �

proving the claim.

Assume now that we pass yn through a filter with spectrum
� N0

F � 	 1 � z � 
 . The
result, call it rn, will have the form

rn :  ∑
l

flxn � l � wn �
Let’s first consider the noise sequence wn. From (2.5) its spectrum is given by

Sw � z 
� H � z 
 H � � 1 � z � 
 Sz � z 
� � N0

F
� � 1 � z � 
 � N0

F � z 
 F � z 
 F � � 1 � z � 
� N0 �

so that we see that the process is now white! Therefore the filter
� N0

F � 	 1 � z � 
 is called
a whitening filter. Next lets consider the impulse response fn. It is the result of

convolving Rg � n 
 with the impulse response corresponding to the filter
� N0

F � 	 1 � z � 
 .
Since F � z 
 F � � 1 � z � 
� Sz � z 
� N0Sg � z 
 it follows that

Sg � z 
 � N0

F
� � 1 � z � 
  1� N0

F � z 
 �
Therefore fn is seen to be the inverse transform of 1� N0

F � z 
 !
We still have a large degree of freedom in choosing F � z 
 . This degree of

freedom stems from our choice in assigning the roots of Sz � z 
 to either F � z 
 or
F
� � 1 � z � 
 . We would like our filter F � z 
 to be causal, stable and minimum phase.

Causality and stability require that all poles of F � z 
 are within the unit circle. This
is always true since F � z 
 is a polynomial in z � 1 and so all its poles are at z  0.
In order for F � z 
 to be minimum phase we require that (besides all poles also) all
zeros of F � z 
 are within the unit circle. This can always be accomplished since as
we saw beforehand all zeros of Sw � z 
 come in conjugate-symmetric pairs. Note
though that with this choice, all the zeros and poles of F

� � 1 � z � 
 are outside the
unit circle, so that F

� � 1 � z � 
 is stable but anticausal. For implementation purposes
this is not of big concern since we can always introduce a sufficiently large delay
to implement such a filter.

We summarize: By passing yn through a cleverly chosen filter we can (i)
whiten the noise and (ii) make the equivalent impulse response fn to be causal.
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Example 7. Assume we have Rg � 0 
� 1 � � a � 2, Rg � 1 
  a, Rg � k 
� 0 for k � 2.
Then

Sz � z 
  N0 � a
�
z � � 1 � ��� a � 2 
 � az � 1 
  N0 � az � 1 � 1 
 � a � z � 1 
  N0 � 1

a
� z � 1 � 1 
 � 1

a
z � 1 
 � a � 2 �

If � a � 
 1, then we pick F � z 
  � N0 � 1 � az � 1 
 , whereas if � a � � 1 then we pick
F � z 
� � N0 � a � � 1 � 1

a � z � 1 
�
 . In the first case we get

fn : 

����� ����
0 � n 
 0 �
1 � n  0 �
a � n  1 �
0 � n � 2 �

and the resulting channel is

rn  xn � axn � 1 � wn �

Remark: We cheated slightly in our derivation above by invoking arguments
in the frequency domain (which assumes that all processes are stationary) while
at the same time assuming that the transmitted sequence was of finite length.

2.2 THE VITERBI ALGORITHM FOR THE EQUIVALENT DISCRETE TIME CHAN-
NEL

Assume now that we have the following discrete-time channel model.

yn 
L � 1

∑
l � 0

hlxn � l � zn � n  0 � ����� � N 	 1 �

where all quantities are either real or complex valued, xi takes values in some
discrete subset of � or � , h represents the channel impulse response which is
causal and of length L and the zn are i.i.d. random variables with density p � z 
 ,
not necessarily Gaussian. We have seen in the previous section one way in which
such a channel model might arise.

In Exercise 2.3 we discussed how we can apply the Viterbi algorithm to this
case to implement the optimal detector in an efficient manner. The key lies in the
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fact that

max
x̃0 � 	 	 	 � x̃N ! 1

p � y0 � ����� � yN � 1 � x̃0 � ����� � x̃N � 1 


 max
x̃0 � 	 	 	 � x̃N ! 1

p � z0  y0 	
L � 1

∑
l � 0

hl x̃0 � l � ����� � zN � 1  yN � 1 	
L � 1

∑
l � 0

hl x̃N � 1 � l 


 max
x̃0 � 	 	 	 � x̃N ! 1

N � 1

∏
n � 0

p � zn  yn 	 h0x̃n 	
L � 1

∑
l � 1

hl x̃n � l 


 max
x̃0 � 	 	 	 � x̃N ! 1

N � 1

∏
n � 0

em 	 yn;x̃n; � n 

�

If we apply the logarithm to both sides of the above equation, then we see that we
can label the edges of the trellis with the quantities

m � yn; x̃n; � n 
� ln p � zn  yn 	 h0x̃n 	
L � 1

∑
l � 1

hl x̃n � l 
 �

and then employ the Viterbi algorithm to find the most likely sequence. Alterna-
tively we can label the edges directly with

em 	 yn;x̃n; � n 
  p � zn  yn 	 h0x̃n 	
L � 1

∑
l � 1

hl x̃n � l 
 �

and then modify the Viterbi algorithm to multiply the partial metrics rather than to
add them.

It is easy to see that if we have a prior of the form

Pr � x̃0 � ����� � x̃N � 1 
�
N � 1

∏
n � 0

Pr � x̃n 
 �

then such a prior can be taken into account simply by replacing the partial metrics
p � zn  yn 	 h0x̃n 	 ∑L � 1

l � 1 hl x̃n � l 
 with p � zn  yn 	 h0x̃n 	 ∑L � 1
l � 1 hl x̃n � l 
 Pr � x̃n 
 .

2.3 THE BCJR ALGORITHM FOR THE EQUIVALENT DISCRETE TIME CHAN-
NEL

We have seen in the previous two sections how we can use the Viterbi algorithm to
find the most probable sequence given the observation. Such a detector minimizes
the probability of sequence error. In some instances it is more natural to minimize
the probability of bit error. This can be done by using the criterion

argmaxx̃n
Pr � x̃n � y0 � ����� � yN � 1 � �

We will now see that the BCJR algorithm, a close relative of the Viterbi algorithm,
can be used to implement such a detector efficiently.



46 CHAPTER 2. TRANSMISSION OVER LINEAR TIME-INVARIANT CHANNELS

We start by rewriting the decision criterion in a more convenient form. As-
sume again that the prior has product form, i.e., that

Pr � x̃0 � ����� � x̃N � 1 
�
N � 1

∏
n � 0

Pr � x̃n 
 �

Then we get

argmaxx̃n
Pr � x̃n � y0 � ����� � yN � 1 �

 argmaxx̃n ∑
x̃0 � 	 	 	 � x̃n ! 1 � x̃n

�
1 � 	 	 	 � x̃N ! 1

Pr � x̃0 � ����� � x̃N � 1 � y0 � ����� � yN � 1 �

 argmaxx̃n ∑
x̃0 � 	 	 	 � x̃n ! 1 � x̃n

�
1 � 	 	 	 � x̃N ! 1

Pr � y0 � ����� � yN � 1 � x̃0 � ����� � x̃N � 1 � Pr � x̃0 � ����� � x̃N � 1 �

 argmaxx̃n ∑
x̃0 � 	 	 	 � x̃n ! 1 � x̃n

�
1 � 	 	 	 � x̃N ! 1

N � 1

∏
n � 0

p � zn  yn 	 h0x̃n 	
L � 1

∑
l � 1

hl x̃n � l 
 Pr � x̃n 


 argmaxx̃n ∑
x̃0 � 	 	 	 � x̃n ! 1 � x̃n

�
1 � 	 	 	 � x̃N ! 1

N � 1

∏
n � 0

em 	 yn;x̃n; � n 
 � lnPr 	 x̃n 

Consider now the trellis and assume that we label the edges of this trellis with the
partial metrics em 	 yn;x̃n; � n 
 � lnPr 	 x̃n 
 as for the Viterbi algorithm. The metric associ-
ated to each path through this trellis is then simply the product of the associated
partial metrics traversed by this path. For the Viterbi algorithm we had to find the
path with the largest such metric. If we consider the above equation then we see
that for the problem of finding the most probable bit value we have to proceed as
follows: Sum up the path metrics of all paths which have a specific value x̃n for
the n-th transmitted symbol and decide upon the n-th transmitted symbol based
on this sum. The BCJR algorithm is an efficient algorithm to accomplish this
summation.

Consider all paths in the trellis which pass through a particular state at time i.
For the Viterbi algorithm we realized that the path with the largest metric among
these paths is the one which has the largest “past” metric and the largest “future”
metric. This was true since the set of all such paths has a product structure, i.e.,
we can combine any “past” with any “future.” Assume now that rather than de-
termining the path with the largest metric we want to determine the sum of the
metrics of all such paths. Again, because of the product structure, the sum of all
metrics is equal to the sum of all “past” metrics multiplied with the sum of all
“future” metrics. This follows from the simple distributive law

∑
i � j aib j 



∑

i
ai
� 


∑
j

b j
�
�

This is the basis of the BCJR algorithm.
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3. EQUALIZATION

Let’s start again from the equivalent discrete time channel

yn  ∑
k

Rg � k 
 xn � k � zn �

where zn is a complex valued circularly symmetric Gaussian process with Rz � k 
 
N0Rg � k 
 . We have seen in the previous sections various methods of implementing
an optimal receiver for this setup where the criterion of optimality was either to
minimize the probability of sequence error or the probability of bit error. In all
our previous discussions we assumed that there exists a sufficiently small integer
L such that Rg � k 
  0 for k � L, so that the complexity of the optimal receiver,
which was proportional to �X � L � 1, was sufficiently small.

In this section we will discuss receiver structures which are suboptimal but
have a lower complexity. The basic idea underlying these receiver structures is
to filter the sequence yn in such a way as to either eliminate or at least mitigate
the effect of the inter-symbol interference. We will see that in return such a filter
boosts the variance of the noise. There is therefore an inherent tradeoff between
eliminating ISI and keeping the noise variance low. When we discuss equalizers
we make use of some basic facts of linear prediction. We will therefore start with
a small discussion on linear prediction summarized in Appendix A.

3.1 DECISION FEEDBACK EQUALIZERS

Let’s now return to our equivalent discrete time channel model

yn  ∑
k

Rg � k 
 xn � k � zn � (2.6)

where zn is a complex valued circularly symmetric Gaussian process with Rz � k 
 
N0Rg � k 
 .

Consider the decision feedback equalizer shown in Fig. 2.3. It consists of a

f

b

yn wn x̂n� �

Figure 2.3: Block diagram of a decision feedback equalizer.

forward filter f , a backward filter b and a decision device. The idea is to feed
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back the past decisions and to use them to cancel part of the intersymbol inter-
ference. Note that, under the assumption of correct past decisions, this feedback
is noiseless! In order for the backward filter to be realizable we assume that it is
strictly causal. It will be convenient to define the related monic and causal filter
B0 � z 
� 1 � B � z 
 .

In terms of the z-transform the input to the decision device, call it W � z 
 , is
given by

W � z 
� F � z 
 Y � z 
 	 B � z 
 X̂ � z 
� F � z 
 Y � z 
 	 � B0 � z 
 	 1 
 X̂ � z 
 �
There is no know exact analysis of this non-linear device. But we can gain some
insight into the behavior of this device by assuming that the decision at the output
of the decision device are correct, i.e., x̂n  xn! Note also, that the most important
performance measure is the probability of error at the output of the decision de-
vice. Unfortunately this quantity is very difficult to determine. We will therefore
be content to determine the variance of the “noise” at the input of the decision
device. The justification is that this noise variance is somewhat correlated to the
probability of error (small/large variance implies small/large probability of error).

3.2 MINIMUM MEAN SQUARED ERROR CRITERION

In this section we will see how to choose the filters in such a way as to minimize
the variance of “noise” at the input to the decision device.

Under the assumption of correct past decisions we have

E � z 
  W � z 
 	 X � z 

 � F � z 
 Y � z 
 	 � B0 � z 
 	 1 
 X � z 
�
 	 X � z 

 F � z 
 Y � z 
 	 B0 � z 
 X � z 

 F � z 
 Y � z 
 	 V � z 
 �

where we defined V � z 
 :  B0 � z 
 X � z 
 , vn :  ∑k � 0 b0kxn � k. Recall that we want to
choose the filters f and b in such a way that the variance of the error sequence is
minimized. We will proceed in two steps. Assume first that the backward filter b is
fixed and that we want to choose the forward filter f in such a way as to minimize
the variance of the error sequence. In the language of our previous discussion: we
want to predict vn based upon our the observations � yk � k ��� . Note in particular
that we allow f to be non-causal. From Example 27 in Appendix A we know that
the optimal filter is given by

FMMSE � z 
� Sv� y � z 

Sy � z 
 �
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It remains to explicitly determine Sy � z 
 and Sv� y � z 
 . Using (2.6), we see that

Ry � k 
 :  � � yn y
�
n � k �

 �
� �

∑
m

Rg � m 
 xn � m � zn �


∑

l

R
�

g � l 
 x
�
n � k � l � z

�
n � k

� �
 ∑

m
Rg � m 
 R

�
g � m 	 k 
 � N0Rg � k 


 ∑
m

Rg � m 
 Rg � k 	 m 
 � N0Rg � k 
 �

and

Rv� y � k 
 :  � � vn y
�
n � k �

 �
� 


∑
m � 0

b0mxn � m
� 


∑
l

R
�

g � l 
 x
�
n � k � l � z

�
n � k

���
 ∑

m � 0

b0mR
�

g � m 	 k 


 ∑
m � 0

b0mRg � k 	 m 
 �

In the spectral domain this translates to

Sy � z 
� Sg � z 
 � Sg � z 
 � N0 
 � Sv� y � z 
� B0 � z 
 Sg � z 
 �
Therefore

FMMSE � z 
� Sv� y � z 

Sy � z 
 

B0 � z 
 Sg � z 

S 2

g � z 
 � N0Sg � z 
 
B0 � z 


Sg � z 
 � N0 �
We see that we expressed the optimal forward filter as a function of the backward
filter. With this choice of forward filter the error sequence is given by

E � z 
� F � z 
 Y � z 
 	 B0 � z 
 X � z 
� B0 � z 

�

Y � z 

Sg � z 
 � N0

	 X � z 
 �  B0 � z 
 U � z 
 �

where we defined

U � z 
 :  Y � z 

Sg � z 
 � N0

	 X � z 
 � (2.7)

What is the spectrum of the WSS process un? Note that if an and bn are two WSS
processes and cn  an 	 bn, then

Sc � z 
� Sa � z 
 � Sb � z 
 	 Sa � b � z 
 	 S
�
a � b � 1 � z � 
 �

We apply this fact to the process un, where from equation (2.7) we have U � z 
 : 
Y 	 z 


Sg 	 z 
 � N0
	 X � z 
 . The first part is the result of passing Y � z 
 with spectrum Sy � z 
�
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Sg � z 
 � Sg � z 
 � N0 
 through a filter 1
Sg 	 z 
 � N0

. Therefore the first part has a spectrum
equal to

Sg � z 
 � Sg � z 
 � N0 
 1
Sg � z 
 � N0

1
S �

g � 1 � z � 
 � N0
 Sg � z 


S �
g � 1 � z � 
 � N0

 Sg � z 

Sg � z 
 � N0 �

The second part has a spectrum equal to 1. It remains to determine the cross-
correlation parts. If an and bn are two WSS processes where an  ∑l glbn � l then

Ra � b � k 
�
� � � ∑
l

glbn � l 
 b
�
n � k �  ∑

l

glRb � k 	 l 
 	 Sa � b � z 
� G � z 
 Sb � z 
 �
It follows that the spectrum corresponding to the cross-correlation is equal to

Sg � z 
 1
Sg � z 
 � N0

Sx � z 
� Sg � z 

Sg � z 
 � N0 �

Combining all these results we get

Su � z 
  Sg � z 

Sg � z 
 � N0

� 1 	 Sg � z 

Sg � z 
 � N0

	 S
�
g � 1 � z � 


S �
g � 1 � z � 
 � N0

 Sg � z 

Sg � z 
 � N0

� 1 	 2
Sg � z 


Sg � z 
 � N0

 N0

Sg � z 
 � N0

Example 8. [Linear Minimum Mean-Squared Equalizer] We are now ready to
discuss the first important special case. This is the case where we omit the feed-
back filter and our equalizer consists solely of the forward filter f . This is called
a linear equalizer and since we chose as a criterion for the filter to minimize the
mean-squared error this is abbreviated as the LMMSE equalizer. In this case we
have B � z 
� 0 or, equivalently, B0 � z 
� 1. We see from E � z 
� B0 � z 
 U � z 
� U � z 

that in this case the power spectrum of the error sequence is equal to Su � z 
 

N0
Sg 	 z 
 � N0

. Therefore the mean squared error incurred in this case is equal to

� 2
LE-MMSE 

� 1
2

� 1
2

N0

Sg � e2 � j f 
 � N0
d f � (2.8)

In the general case where we allow a feedback filter we still have the degree
of freedom in choosing b. Recall that

E � z 
� B0 � z 
 U � z 
� � B � z 
 � 1 
 U � z 
� B � z 
 U � z 
 � U � z 
 �
where B � z 
 is strictly causal. It follows from Example 26 in Appendix A that the
optimal filter B0 � z 
 in the mean-squared sense is the monic and causal whitening
filter.
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Assuming that Sg � z 
 is rational then Su � z 
 is rational. In this case we have
seen how to derive the whitening filter. Under suitable conditions whitening filters
can also be constructed for non-rational spectra. This is discussed in Appendix B.

From Appendix B we know that under suitable conditions we can factor Su � z 

as

Su � z 
� S �u � z 
 S �u � z 
 �
where S �u � z 
 is causal and S �u � z 
 is anticausal and that

S �
u � z 
�

exp � � 1
2

� 1
2

ln � Su � e2 � j f 
 � d f � �
is a monic and causal/anticausal filter. Our monic and causal whitening filter is
therefore

B0 � z 
 : 

�
exp � � 1

2

� 1
2

ln � Su � e2 � j f 
 � d f �
S �u � z 
 �

With this choice Se � z 
 is equal to

Se � z 
  Su � z 
 B0 � z 
 B
�
0 � 1 � z � 


 Su � z 

S �u � z 
 
 S �u � 1 � z � 
 � � exp

� � 1
2

� 1
2

ln � Su � e2 � j f 
 � d f

�

 Su � z 

S �u � z 
 S �u � z 
 exp

� � 1
2

� 1
2

ln � Su � e2 � j f 
 � d f

�

 exp

� � 1
2

� 1
2

ln � Su � e2 � j f 
 � d f

�

 exp

� � 1
2

� 1
2

ln

�
N0

Sg � e2 � j f 
 � N0 � d f

�
�

The noise variance in this case is therefore

� 2
DFE-MMSE 

� 1
2

� 1
2

Se � e2 � j f 
 d f  exp

� � 1
2

� 1
2

ln

�
N0

Sg � e2 � j f 
 � N0 � d f

�
� (2.9)

It is constructive to compare � 2
DFE-MMSE with � 2

LE-MMSE. Recall that ln � x 
 is a
concave function and that therefore by Jensen’s inequality�

ln f � ln
�

f �
provided the two integrals exist. Applying this fact to (2.8) and (2.9) we see
immediately that

� 2
DFE-MMSE � � 2

LE-MMSE �
as was to be expected.
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3.3 ZERO FORCING CRITERION

We can also choose our filters according to a different criterion, namely in such a
way that we completely remove the ISI. For the LE this choice is investigated in
Exercise 2.10, where it is shown that

� 2
LE-ZF  N0

� 1
2

� 1
2

1
Sg � e2 � j f 
 d f �

For the more general DFE we will undertake this investigation now.

Assume we choose

F � z 
  1�
exp � � 1

2

� 1
2

ln � Sg � e2 � j f 
 � d f � S �g � z 


B0 � z 
  S �g � z 
�
exp � � 1

2

� 1
2

ln � Sg � e2 � j f 
 � d f �
With this choice we have

E � z 
  F � z 
 Y � z 
 	 B0 � z 
 X � z 

 F � z 
 � Sg � z 
 X � z 
 � Z � z 
�
 	 B0 � z 
 X � z 

 � F � z 
 Sg � z 
 	 B0 � z 
�
 X � z 
 � F � z 
 Z � z 


 ������ S �g � z 
 S �g � z 
�
exp � � 1

2

� 1
2

ln � Sg � e2 � j f 
 � d f � S �g � z 

	 S �g � z 
�

exp � � 1
2

� 1
2

ln � Sg � e2 � j f 
 � d f �

������� X � z 
 � F � z 
 Z � z 


 F � z 
 Z � z 

 Z � z 
�

exp � � 1
2

� 1
2

ln � Sg � e2 � j f 
 � d f � S �g � z 

�

We see that indeed all the ISI has been eliminated. Recall that Sz  N0Sg � z 
 . It
follows that the spectrum of E � z 
 is flat. More precisely,

E � z 
� N0

exp � � 1
2

� 1
2

ln � Sg � e2 � j f 
 � d f � �
and so the associated mean squared error is equal to

� 2
DFE � ZF 

N0

exp � � 1
2

� 1
2

ln � Sg � e2 � j f 
 � d f �  N0 exp

� � 1
2

� 1
2

ln

�
1

Sg � e2 � j f 
 � d f

�
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Using again Jenson’s inequality, we see that, as in the case when using the MMSE
criterion, the DFE leads to a lower variance of the error sequence, i.e.,

� 2
DFE � ZF � � 2

LE � ZF �
For the DFE-ZF a precoding technique has been proposed to avoid the prob-

lem with unreliable feeback. The basic idea is to move the effect of the feedback
filter into the transmitter part. This of course requires that the transmitter knows
the channel. Assume that rather than transmitting X � z 
 we transmit X̃ � z 
 :  X 	 z 


B0
	 z 
 .

The received sequence Ỹ � z 
 is then equal to

Ỹ � z 
� Sg � z 

B0 � z 
 X � z 
 � Z � z 
 �

where the noise is again circularly symmetric Gaussian with power spectral den-
sity equal to N0Sg � z 
 . At the output of the filter F � z 
 we then have

Ỹ � z 
 F � z 
� Sg � z 
 F � z 

B0 � z 
 X � z 
 � F � z 
 Z � z 
� X � z 
 � F � z 
 Z � z 
 �

We see that the ISI has been removed and that the noise is white! In effect we
have cancelled the causal part of the ISI by the prefilter (which does not suffer
from error propagation) and we cancel the anticausal part by the forward filter.
Not all is well though. The problem with this naive implementation of precoding
is that it boosts the transmit power!

A simple trick eliminates this problem almost completely. Assume that our
constellation is X :  � �

� � �
3 � � � � M 	 1 
 � � and let the transmitted sequence

be

X̃ � z 
 :  X � z 
 � 2M ��� � z 

B0 � z 
 �

where � n is an integer sequence chosen in such a way that x̃n is in the range
� M � � M � � (this can be done by simply taking the sequence and reducing it mod-
ulo 2M � before transmission). Now the received sequence Ỹ � z 
 is equal to

Ỹ � z 
� Sg � z 

B0 � z 
 � X � z 
 � 2M ��� � z 
�
 � Z � z 
 �

and the output of the filter F � z 
 is equal to

Ỹ � z 
 F � z 
  Sg � z 
 F � z 

B0 � z 
 � X � z 
 � 2M ��� � z 
�
 � F � z 
 Z � z 


 X � z 
 � 2M ��� � z 
 � F � z 
 Z � z 
 �
Since the noise is white we can make a decision on X � z 
 � 2M ��� � z 
 and a mod-
ulo 2M � operation then gives us an estimate of X � z 
 .



54 CHAPTER 2. TRANSMISSION OVER LINEAR TIME-INVARIANT CHANNELS

How does this effect the transmit power? The original constellation had an
average energy per transmitted symbol equal to

2
M �

2
M � 2
∑
i � 1
� 2i 	 1 
 2  � 2 M2 	 1

3 �
Assuming that the values of the sequence x̃ are uniformly distributed over the
intervale ��	 M � � M � � the average energy per symbol expanded is equal to

1
M �

2
� M

0
a2da  � 2 M2

3
�

which is only insignificantly higher.

3.4 SUMMARY

We summarize: We investigated four (one of them in Exercise 2.10) equalizers
and determined the resulting noise variance at the input to the decision device.
The first two equalizers were linear equalizers (LE), i.e., they consists simply of
a forward filter. This forward filter can be chosen either in such a way as to cancel
completely the ISI (zero forcing (ZF) criterion) or in such a way as to minimize the
mean squared error (MMSE criterion). The second two examples were decision
feedback equalizers. Again, the filters can be chosen either according to the ZF
criterion or according to the MMSE criterion. We showed that

� 2
DFE-MMSE � � 2

LE-MMSE � � 2
LE-ZF �

and
� 2

DFE-MMSE � � 2
DFE-ZF � � 2

LE-ZF �
In the sequel we list the choice of filters and the resulting noise variance for each
of these three cases.

EXERCISES

2.1. [Trellis Sections] Assume again that we use antipodal signaling. In class we
draw the trellis digram for the case L  2. Draw one trellis section for the cases
L  3 and L  4. For the case of general L. What is the size of the state space and
how many edges are there per trellis section?

2.2. Consider the following transmission scheme. The transmitted symbols xn

are i.i.d. random variables, taking on � 1 and 	 1 equally likely, and the received
symbols are given by

yn 
n

∏
i � 1

xi � zn � n  1 ������� � N �
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where zn is an i.i.d. sequence of random variables with density p � z 
 .
We would like to use the Viterbi (BCJR) algorithm to find the most likely

transmitted sequence (bit) given the received sequence. Find a suitable state
(which has a small state space) so that we can write p � y1 ��������� yN � x1 ��������� xN 
 in
the form

p � y1 ��������� yN � x1 ������� � xN 
�
N

∏
n � 1

f � yn;xn; � n 
 �
Draw the corresponding trellis, assuming that N  4. What is the complexity of
the decoding algorithm? NOTE: This part requires quite some calculations. Finish
the other problems first and do not loose too much time on this part!

Now assume that

p � z 
 : 
�

2 � � z �4 � � z � � 2 �
0 � otherwise �

Assume further that

y1  	 0 � 1 � y2  0 � 5 � y3  0 � 9 � y4  	 0 � 2 �
Apply the Viterbi algorithm to this case to find the most likely transmitted se-
quence x̃1 � x̃2 � x̃3 � x̃4.

2.3. [Viterbi Algorithm] Assume that we have the following discrete-time chan-
nel:

yn 
L � 1

∑
l � 0

hlxn � l � zn � n  0 � ����� � N 	 1 �

where all quantities are complex-valued, xn takes values in some discrete subset
of � , h represents the channel impulse response which is causal and of length
L and the zn are i.i.d. and circularly-symmetric Gaussian. We are interested in
determining the likelihood of the most likely sequence, i.e., we want to determine

max
x̃0 � 	 	 	 � x̃N ! 1

p � y0 � ����� � yN � 1 � x̃0 � ����� � x̃N � 1 
 �
Devise an efficient algorithm to accomplish this task.

2.4. Consider transmission over a linear time-invariant channel using pulse-amplitude
modulation as discussed in class, i.e., the received signal is of the form

yE � t 
�
N � 1

∑
n � 0

xngE � t 	 nT 
 � Z � t 
 �

where the symbols xn take values in the symbol alphabet X and where Z � t 
 is
assumed to be white circularly-symmetric Gaussian noise. Assume, as we did in
class, that for some finite natural number L we have

Rg � k 
� 0 � � k � � L �
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where
Rg � k 
 : 

�
gE � t 
 g

�
E � t 	 kT 
 dt �

Recall that the optimum detector for this case can be implemented efficiently by
means of the Viterbi algorithm.

1. Which of the following pictures could represent a trellis section for this
problem.

2. For those pictures that could represent a trellis section for this problem,
what are the corresponding parameters �X � and L?

(a) (b) (c) (d)

2.5. [Preliminaries for the BCJR Algorithm] Consider the same transmission
model as in the previous example. The Viterbi algorithm finds the most likely
sequence and, under the assumption of a uniform prior on the set of all such
sequences, minimizes the sequence error probability. Sometimes we are more
interested in minimizing the bit error probability, which we can accomplish if we
use the decision criterion

max
x̃n

Pr � x̃n � y0 � ����� � yN � 1 � �
In class we will get to know the BCJR algorithm (which is a close relative of the
Viterbi algorithm) to accomplish this task efficiently. As a preparation: Express
Pr � x̃n � y0 � ����� � yN � 1 � in terms of quantities which we can compute (efficiently or
not).

2.6. [Shortest Path Algorithm] The Viterbi algorithm is a special case of a more
general principle called dynamic programming. In this example we will investi-
gate another application of dynamic programming. Assume we want to find the
shortest route between a given pair of cities in Europe. We are given a map which
contains the cities and the streets between them, labeled with the length of these
streets. We envision this map as a graph: the cities are nodes and the streets are
edges; each edge � has an associated length l ��� 
 , l ��� 
 � 0, which corresponds to
the length of the corresponding street. Given a pair of nodes ��� S ��� E 
 , a path is
a sequence of connected edges starting at � S and ending at � E . Given a pair of
nodes ��� S ��� E 
 , and we are asking for the shortest path between them, where the
length of a path, is the sum of the lengths of the traversed edges. We will now
describe an algorithm, very similar in flavor to the Viterbi algorithm, which solves
this problem efficiently. The algorithm is due to Dijkstra (1959).
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Read the handouts concerning this topic and apply the algorithm to the exam-
ple given therein.

2.7. [Partial Sequence Estimator] Consider again antipodal signaling over the
discrete-time channel

yn 
L � 1

∑
l � 0

hlxn � l � zn � n  0 � ����� � N 	 1 �

where � hl � l represents the channel impulse response which is causal and of length
L � 3 and the zn are i.i.d. Gaussian distributed. The Viterbi algorithm is a sequence
APP estimator, the BCJR algorithm is a symbol APP estimator. We are now in-
terested in an algorithm maximizing the probability of two consecutive symbols
� xi � 1 � xi 
 . Derive such an algorithm.

2.8. In this problem we will develop some basic properties of minimum phase
systems step by step. Recall that a rational filter H � z 
 is called minimum phase if
all its poles and zeros are inside the unit circle.

1. Show that a minimum phase filter H � z 
 is causal and stable.

2. Show that a minimum phase filter H � z 
 has a causal and stable inverse.

3. Show that the frequency response of a filter H � z 
 of the form

H � z 
 :  z � 1 	 a
�

1 	 az � 1

has unit magnitude, i.e., �H � e2 � j f 
 �  1. Such a filter is called an all-pass
filter, since it passes all frequency components with a gain of unity.

4. Assume that H � z 
 is a rational filter with all its poles inside the unit circle
and assume further that also all its zeros are inside the unit circle except the
zero at z  1

c � , where � c � 
 1, i.e.,

H � z 
� H1 � z 
 � z � 1 	 c
� 
 �

where H1 � z 
 is a minimum phase filter (i.e., has all its poles and zeros inside
the unit circle). Show how we can derive from H � z 
 a minimum phase filter
with equal frequency response. Generalize this approach to the case where
H � z 
 has any number of zeros outside the unit circle.

5. As stated in class, a rational filter H � z 
 which is minimum phase has the
following important minimum energy-delay property. Of all rational filters
H � z 
 with the same �H � e2 � j f 
 � 2, a minimum phase filter maximizes the par-
tial energy terms

k

∑
i � 0

� hi � 2 (2.10)
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for all k � 0. Note that in the limit though we get from Parseval that

∞

∑
i � 0

� hi � 2 
� 1

2

� 1
2

�H � e2 � j f 
 � 2d f �

which only depends on the magnitude of the frequency response and is
therefore equal for all filters with the same such magnitude. In this exer-
cise we will prove the assertion (2.10) for k  0.

Note from the previous item that we can write any rational filter H � z 
 as the
product of a minimum phase filter with an all-pass filter, i.e.,

H � z 
� Hmin � z 
 Hap � z 
 �
Recall the initial value theorem of the z-Transform. For a causal hn we have
h0  limz � ∞ H � z 
 . Use these two facts together to prove the assertion for
k  0.

2.9. Consider the setup in Example 26. Prove that the defining equations in (A.4)
indeed imply that f should be the monic and causal whitening filter by completing
the following steps.

1. Let xn be a zero mean WSS stochastic process and wn  ∑k � 0 fkxn � k be the
result of passing xn through a causal and monic filter fn.

2. Let Rx � k 
 : 	� � xn x
�
n � k � . Show that

Rw � k 
� ∑
l � k

f
�
l � k ∑

m � 0
fmRx � l 	 m 
 �

3. Assume first that f fulfils the equations (A.4). Show that this implies that
for k � 1, Rw � k 
� 0.

4. Now argue that this implies that Rw � k 
  0 for k � 0. This shows that w
is white, i.e., that f is indeed a whitening filter (it is monic and causal by
definition).

2.10. In this exercise we will investigate the so called linear zero forcing equalizer.
Consider again the equivalent discrete time channel model

yn  ∑
k

Rg � k 
 xn � k � zn �

where zn is a complex valued circularly symmetric Gaussian process with Rz � k 
 
N0Rg � k 
 . Assume we filter this received signal through some filter F � z 
 .

1. How do we have to choose f in order to eliminate the intersymbol interfer-
ence completely. (This is the reason why this design criterion is called zero
forcing since we force the intersymbol interference to zero.)
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2. What is the power spectral density of the noise at the output of the filter.

3. Argue that the noise power for this design criterion is larger than for the
MMSE criterion.

2.11. Show that
� 2

DFE-ZF � � 2
LE-ZF �

2.12. Consider the naive precoding scheme discussed in class where the transmit-
ted signal is equal to

X � z 

B0 � z 
 �

where B0 � z 
 :  S
�

g
	 z 


Ag � Assume that Rx � k 
� � � k 
 . Show that Rx̃ � 0 
 � 1.
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3

SPREAD SPECTRUM COMMUNICATIONS

1. MULTIPLE ACCESS COMMUNICATIONS

So far we have been concerned with a single user transmitting over a dedicated
channel. In a multiple access system there are several users who want to transmit
information to a single receiver, see Fig. 3.1. Think e.g. of a cellular mobile

user 1

user 2

user 3

user kreceiver

Figure 3.1: The basic multiple-access problem. Several users try to convey infor-
mation to the same receiver.

phone system in which all users in the same cell want to communicate to (via) the
same base station.

61
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The multiple access problem can be solved in many different ways. One nat-
ural method is to use time-division multiple access (TDMA). Assume that there
are k users who want to convey information to the same receiver. Split the time
axis into many (small) slots and assign each such slot to exactly one user. Each
user only transmits at her assigned time slots, so that at any point in time only
a single user is transmitting. This reduces the multiple access problem to k inde-
pendent point-to-point channels. For each such point-to-point problem we can use
the standard methods we have learned so far. Note that in order for this scheme
to work we need all users to be synchronized and that we have to consider the
time delays incurred by the channel. In a similar way one can split the frequency
band into k disjoint frequency bands and assign one such band to each user who
limits his transmission to his assigned frequency band. Such a scheme is called
frequency-division multiple access. Again, the multiple access problem is reduced
to several independent point-to-point communication problems. The basic idea of
the above two methods is to separate the transmission of the individual users by
assigning them subspaces which are orthogonal. For TDMA this orthogonality
is most easily seen in the time domain, whereas for FDMA this orthogonality is
easier to see in the frequency domain. More generally, by assigning to individ-
ual users orthogonal subspaces such a separation can be achieved and, in general,
such a method is called code-division multiple access (CDMA). To see another
example, assume that we use a Nyquist pulse � � t 
 , so that � � t 
 is orthogonal to
all its shifts � � t 	 i � 
 . Assigning each such shift to exactly one user and assume
that each user only employs the subspace which is spanned by the set of shifts as-
signed to him. Then we can be assured that the transmissions of individual users
are orthogonal.

TDMA, FDMA and CDMA, although they constitute quite natural approaches,
are, in general, not optimal, i.e., for a given channel model (frequency band, noise)
and a given transmit power, they, in general, fall short of achieving the maximal
information throughput possible. In the information theory class you will learn
how to assess the performance of these schemes in an information theoretic sense
and how this performance compares to the ultimate limits.

Although TDMA, FDMA and CDMA are not necessarily optimal, they are
the preferred multiple-access schemes in practice since they allow the transmis-
sion of a sizeable fraction of capacity at fairly low complexity. In this section we
will learn some basic facts about spread spectrum communications, a transmis-
sion technique which can be used for point-to-point channels as well as a multiple
access technique.

2. SPREAD SPECTRUM

Spread spectrum techniques can be used for point-to-point channels as well as a
multiple access technique. Consider first the point-to-point case. The idea is to
spread out the signal of the given user over a frequency band which is much larger
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than required and to use a signal which in the frequency domain looks like “white
noise” over the frequency band used.

The basic transmitter/receiver block diagram of a spread spectrum system for
a single user is shown in Fig. 3.2. Here, for simplicity, we assume that antipo-

“noise-like”

s � t �

s � t �

filterdemodulator
detector

digital
waveform

digital
waveform

R bits/second

sinusoidal carrier

sinusoidal carrier

RFbaseband

Figure 3.2: Basic transmitter/receiver block diagram of a spread spectrum system.

dal signaling is used and that the transmit filter is simply a rectangular. Before
modulating the waveform into passband the waveform is spread by a wideband
“noise-like” signature s � t 
 .

3. SPREAD SPECTRUM MULTIPLE ACCESS

In a multiple-access scenario the system looks as shown in Fig. 3.3. Note that

transmitter 1
s1
�
t �

transmitter k
sk
�
t �

receiver 1
s1
�
t �

receiver k
sk
�
t �

Figure 3.3: A spread spectrum system with k users.

each user is assigned a different signature. These signatures are chosen to be
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almost orthogonal.1

4. A FIRST (VERY SHAKY) ANALYSIS

4.1 ANALYSIS OF CORRESPONDING NARROWBAND SYSTEM

Consider first the corresponding narrowband system shown in Fig. 3.4. Assume

digital waveform
R bits/second AWGN

�
N0
2 �

� matched
filter

slicer

Figure 3.4: The corresponding narrowband system.

we use antipodal signaling and a rectangular transmit filter. If we assume that we
use an energy of Eb per bit then the signal constellation viewed in signal space is
the one given in Fig. 3.5. Recall that the AWGN has variance � 2  N0

2 . It follows� � Eb � Eb

d � 2 � Eb

Figure 3.5: Antipodal signal constellation.

that the corresponding bit error probability is equal to

Pb  Q

�
d

2 � �  Q


��
2Eb

N0

�
�

This is for an uncoded system, but even in the presence of coding the bit error
probability is a function of Eb

N0
.

4.2 ANALYSIS OF SPREAD SPECTRUM MULTIPLE ACCESS SYSTEM

Consider the receiver for the j-th user of a spread spectrum multiple access (SSMA)
system with k users as shown in Fig. 3.6. We will assume that the background
noise is negligible compared to the interference from other users. We will assume

1Actually we will see that these signatures can be chosen such that any pair of such signatures is
almost orthogonal even if we allow arbitrary time shifts. This is important if we allow asynchronous
users.
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s j � t �

filterdemodulator
detector

digital
waveform

sinusoidal carrier

RFbaseband

Figure 3.6: Receiver for the j-th out of k users.

for now that the interference from other users can be modeled as white Gaussian
noise so that we will only have to be concerned with the variance of this noise.

Assume that in order to achieve the desired bit probability of error we require

an Eb
N0

of
�

Eb
N0
�

req
. This number depends on the specific modulation scheme (in

our example antipodal) and the coding scheme used. Assume that the received
power of each user is the same and is equal to PS. Since there are � k 	 1 
 other
users the total received power of all other users is equal to I0 :  PS � k 	 1 
 �W � .
By assumption this power will act as AWGN noise. This power is spread over a
bandwidth of W �Hz � , so that the noise power spectral density of this interference

is equal to PS
	 k � 1 

W , call it I0. I0 plays the role equivalent to N0. The energy per

(transmitted information) bit is equal to

Eb  PS

R �
Therefore,

Eb

I0
 PS

R
W

PS � k 	 1 
 
W

R � k 	 1 
 �
It follows that in order to achieve the desired Pe we need

W
R � k 	 1 
 

Eb

I0 �
�

Eb

N0 � req
�

or

k 	 1 � W � R�
Eb
N0
�

req
�

There are other important factors which influence the performance of a SSMA
system. If the system is used for voice traffic then typically users are only speaking
for a fraction of the time, i.e., only a fraction of the users is typically active at the
same time. This is modeled by the voice duty factor GV , GV � 1. Instead of using
I0 we then use I0 � GV . Another gain comes from the antenna. Often antennas are
directional, i.e, there are maybe three antennas per cell, each covering an angle of
120 degrees. For this particular case, the antenna which receives the transmission
of user j typically will only “see” a third of all other users as interference. We
denote this gain by GA.
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On the other hand we will get interference from other cells. This is called
intercell interference and is usually modelled as a factor � 1 � f 
 . Taking this
factors into account we have the modified equation

k 	 1 � W � R�
Eb
N0
�

req

GAGV

1 � f

In the following lectures we will try to give a more reasonable analysis of such a
system and to describe some of the necessary elements in more detail.

5. PSEUDORANDOM SEQUENCES

In the previous pages we have seen that one crucial element of a spread spectrum
system is the generation of “noise-like” sequences. Ideally, we would like to em-
ploy spreading sequences s � t 
 which are the realizations of AWGN processes with
a bandwidth equal to the bandwidth used. But there are practical concerns. One
has to be able to generate these signature waveforms with reasonable hardware
complexity and, further, the same signature must be available at the transmit-
ter and the receiver. For this reason one usually employs binary pseudorandom
sequences generated by linear feedback shift registers (LFSR). These sequences
have many of the properties that one would expect from truly random sequences
and are very easy to implement in hardware.

5.1 MAXIMAL LENGTH LINEAR FEEDBACK SHIFT REGISTERS

We are interested in generating “random-like” binary sequences, i.e, sequences of
elements from � 0 � 1 � which resemble as much as possible sequences of fair coin
flips. In particular we will focus on the following properties of sequences of fair
coin flips.

R.1 The relative frequencies of 0 and 1 are one-half.

R.2 The probability of a run (of zeros or ones) of length k is equal to 2 � k.

R.3 The correlation between pairs of bit positions which are a fixed non-zero
constant apart is equal to one quarter.

We would like our sequences to fulfil the above properties as closely as possible.

Here we are only interested in binary sequences, i.e., sequences which take
components in � 0 � 1 � . Recall that if we have two binary elements, call them a and
b, then we can add them

a � b : 
�

0 � a  b �
1 � a � b �
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which corresponds to the logical ����� and we can multiply them

a � b : 
�

1 � a  b  1 �
0 � else �

which corresponds to the logical ����� . Consider the binary recursion

sn  1
c0

r

∑
i � 1

sn � ici � n � 0 � or, equivalently,
r

∑
i � 0

sn � ici  0 � n � 0 � (3.1)

where s � r ������� � s � 1 are the initial values and where sn, n � 	 r, and the coefficients
ci, i

� � 0 ������� � r � , are binary. Clearly, in order for the recursion (3.1) to be mean-
ingful we need c0  1, and in the sequel we will assume that this is the case. We
can think of this sequence as being generated by the binary LFSR as shown in
Fig. 3.7, where the initial values s � r ��������� s � 1 are preloaded.

D DDD
sn sn � 1 sn � 2 sn � r

cr � 1 crc2c1c0

Figure 3.7: A binary linear feedback shift register of length r. We will always
assume that c0 � 0 � cr.

It will turn out to be convenient to specify the sequence s0 � s1 ������� by means
of its generating function G � D 
 . Here, G � D 
 is defined by

G � D 
 : 
∞

∑
n � 0

snDn

� (3.2)

This is a formal power sum2 in D and one should think of this formal power sum
simply as a clothesline onto which the elements of the sequence s0 � s1 � ����� can be
attached conveniently. In particular, for a formal power sum we are not concerned
with issues of convergence.

2The name generating function is strictly speaking a misnomer since one should not think of G � D �
as a function but simply as a formal sum.



68 CHAPTER 3. SPREAD SPECTRUM COMMUNICATIONS

If we insert (3.1) into (3.2) we get

G � D 
 
∞

∑
n � 0

snDn

	 3 	 1 
 ∞

∑
n � 0



r

∑
i � 1

sn � ici
� Dn


r

∑
i � 1

ciD
i



∞

∑
n � 0

sn � iD
n � i �


r

∑
i � 1

ciD
i



� 1

∑
j � � i

s jD
j � G � D 
 �


r

∑
i � 1

ciD
i



� 1

∑
j � � i

s jD
j �

� �
	 �
g0
	 D 


� G � D 

r

∑
i � 1

ciD
i

If we define the binary polynomial c � D 
 :  ∑r
i � 0 ciDi then we get the relation

G � D 
 c � D 
� g0 � D 
 �
where g0 � D 
 is a polynomial of degree at most � r 	 1 
 which depends on the initial
values and the feedback polynomial c � D 
 , a polynomial of degree r. We conclude
that

G � D 
� g0 � D 

c � D 
 �

BASIC PROPERTIES OF LFSRS

We are now ready to investigate the basic properties of LFSRs.

Definition 6. [Periodicity] We say that a sequence s0 � s1 � ����� is periodic with pe-
riod p if for all i � 0, si � p  si. We say that a sequence is eventually periodic if
the above statement is true for all i � i0, for some suitable constant i0.

Lemma 1. [Property P.1] Consider a LFSR of memory r, r � 1, with feedback
polynomial c � D 
 , c0 � 0, and let G � D 
 be the generating function of the sequence
generated by the LFSR. Then G � D 
 is eventually periodic with period p satisfying
p � 2r 	 1.

Proof. Call the contents of the r shift registers at a given time i the state of the
LFSR at time i. Note that the future of the evolution of the LFSR is completely
specified once the state is known. Once the LFSR is in the all-zero state it will
remain in this state forever and emit the all-zero sequence. Such a sequence is
clearly periodic with period one and since 1 � 2r 	 1 if r � 1, the claim is fulfilled
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in this case. Further, there are only 2r 	 1 non-zero states. This shows that also in
the case that the LFSR never visits the zero state the output sequence is eventually
periodic and that the period is at most 2r 	 1.

Lemma 2. Consider a LFSR of memory r, r � 1, with feedback polynomial c � D 
 ,
c0 � 0, and let G � D 
 be the generating function of the sequence generated by the
LFSR. If cr � 0 then G � D 
 is periodic.

Proof. By Lemma 1 we know that G � D 
 is eventually periodic. Call the period p.
Let n0, n0 � 0, be the least integer n such that si  si � p for all i � n. If n0  0,
then we are done. If on the contrary n0 � 0 but cr  1 then note that from (3.1)
we have

sn � rcr 
r � 1

∑
i � 0

sn � ici �
Therefore,

sn0 � 1 � p  1
cr

r � 1

∑
i � 0

sn0 � 	 r � 1 
 � i � pci �
But also

sn0 � 1  1
cr

r � 1

∑
i � 0

sn0 � 	 r � 1 
 � ici  1
cr

r � 1

∑
i � 0

sn0 � 	 r � 1 
 � i � pci �

showing that sn0 � 1  sn0 � 1 � p, a contradiction to the assumption that n0 was the
smallest such integer.

Lemma 3. [Property P.2] Consider a LFSR of memory r with feedback polyno-
mial c � D 
 , c0 � 0 � cr, and G � D 
  g0

	 D 

c 	 D 
 . If gcd � g0 � D 
 � c � D 
�
  1 then the period

of G � D 
 is the smallest integer p such that c � D 
 divides 1 � Dp.

Proof. Assume that c � D 
 divides 1 � Dp. Then

1 � Dp

c � D 
  a0 � ����� � ap � rD
p � r �

for some polynomial a0 � ����� ap � rDp � r. Therefore

G � D 
� g0 � D 

c � D 
 

g0 � D 
 � a0 � ����� � ap � rDp � r 

1 � Dp �

or
G � D 
 � 1 � Dp 
� � a0 � ����� � ap � rD

p � r 
 g0 � D 
 �� �
	 �
polynomial of degree at most � p 	 1 
 	

This shows that G � D 
 is periodic with period p.
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Conversely assume that G � D 
 has period p. Then

g0

c � D 
  G � D 
  � a0 � ����� � ap � 1Dp � 1 
 � 1 � Dp � D2p � ����� 
 
� a0 � ����� � ap � 1Dp � 1 


1 � Dp �

from which we conclude that

g0 � D 
 � 1 � Dp 
� c � D 
 � a0 � ����� � ap � 1Dp � 1 
 �
From the condition gcd � g0 � D 
 � c � D 
�
  1 and the unique factorization theorem
we conclude that c � D 
 divides 1 � Dp.

Definition 7. A maximum length LFSR (MLSR) of memory r is a LFSR of mem-
ory r whose least period p is equal to 2r 	 1 for all nonzero initial states.

Lemma 4. [Property P.3] A necessary condition for a LFSR of memory r to have
period 2r 	 1 is that its feedback polynomial c � D 
 be irreducible.

Proof. �����������	��
����� ��� ��
 ��� Recall that by assumption deg � c 
  r, i.e., the
degree of c � D 
 is r. Assume to the contrary that c � D 
 factors, lets say c � D 
 
c1 � D 
 c2 � D 
 with deg � c1 
� r1, deg � c2 
� r2, r  r1 � r2. Let g0 � D 
� 1. Then

G � D 
� 1
c � D 
 

1
c1 � D 
 c2 � D 
 

� 1 � D 

c1 � D 
 �

� 2 � D 

c2 � D 
  G1 � D 
 � G2 � D 
 �

We see that in this case the sequence can be generated as the sum of two smaller
LFSRs one of memory r1 and the other of memory r2. We claim that if G1 has
period p1 and G2 has period p2 then G has a period p  p1 p2 (see Exercise 3.1).
But c1 � D 
 has memory r1 and c2 � D 
 has memory r2 so that p1 � � 2r1 	 1 
 and
p2 � � 2r2 	 1 
 . Therefore p  p1 p2 � � 2r1 	 1 
 � 2r2 	 1 
 
 2r 	 1.

Unfortunately irreducibility of c � D 
 is only a necessary condition but it is not
sufficient.

Example 9. The polynomial c � D 
  1 � D � D2 � D3 � D4 is irreducible over the
binary field, i.e., it can not be written as c1 � D 
 c2 � D 
 , for any pair c1 � D 
 , c2 � D 
 of
binary polynomials of degree at least one. However,

� 1 � D � D2 � D3 � D4 
 � 1 � D 
  1 � D5

which shows that c � D 
 divides 1 � D5 and therefore has period 5!

Although we will not prove this in class it is nevertheless comforting to know

Theorem 4. For every natural number r there exists a binary polynomial c � D 

of degree r such that c � D 
 divides 1 � D2r � 1 but such that c � D 
 does not divide
1 � Dp for p 
 2r 	 1. Such a polynomial is called primitive and when used as a
feedback polynomial in a LFSR it generates a maximum length LFSR.
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n c � D 

1 D � 1
2 D2 � D � 1
3 D3 � D � 1
4 D4 � D � 1
5 D5 � D2 � 1
6 D6 � D � 1
7 D7 � D � 1
8 D8 � D4 � D3 � D2 � 1
9 D9 � D4 � 1

10 D10 � D3 � 1

Table 3.1: Table of some primitive polynomials of degree up to ten.

A small list of some primitive polynomials of degree up to ten is given in
Table 3.1.

Lemma 5. [Property P.4] For a given primitive feedback polynomial c � D 
 let

G1 � D 
  g1
	 D 


c 	 D 
 and G2 � D 
  g2
	 D 


c 	 D 
 . Then the two output sequences are simply

delayed versions of each other. Further, the same is true for G1 � D 
 � G2 � D 
 . This
is called the delay and add property.

Proof. See Exercise 3.2.

RANDOMNESS PROPERTIES OF MLSR SEQUENCES

Lemma 6. [Balanced Property-R.1] Consider the output of a MLSR of memory
r and period p  2r 	 1. Then the relative frequency of zeros and ones is equal to
1
2 	 1

2p and 1
2 � 1

2p , respectively, i.e., the relative frequencies are almost balanced.

Proof. Note that since the LFSR is a MLSR, i.e., its period is equal to 2r 	 1, the
state must take on all 2r 	 1 non-zero binary r-tuples. Note that we can identify the
output sequence with the sequence of contents of lets say the rightmost memory
element. But this memory element will contain a zero 2r � 1 	 1 times and a one
2r � 1 times. The result now follows if we divide by the period 2r 	 1 to get the
relative frequencies.

Lemma 7. [Runlength Property-R.2] Consider the output of a MLSR of memory
r and period p  2r 	 1. Let f � l 
 denote the relative frequency of runs (of zeros
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or ones) of length l. Then

f � l 
 

��� �� 1
2l � l  1 � ����� � r 	 2 �

1
2r ! 1 � l  r 	 1 � r�
0 � l � r�

Proof. The proof is not very long but slightly tricky. Consider a window of length
r and consider sliding this window over the sequence. Each time we see in the
rightmost l � 2 positions of this window a pattern of the form 0 � ����� �� �
	 �

l �

0 or 1 � ����� �� �
	 �
l �

1

we add one to the counter which counts runs of length l. Since the sequence is
periodic with period p we only have to shift our window over a length p and
count the number of occurrences within this period. Note that this is equivalent
to looking at all states of the MLSR. First let l  1 � ����� � r 	 2. In this case out of
all p state vectors exactly 22r � 	 l � 2 
 will trigger the event “a run of length l has
occurred.” Next look at runs of length r 	 1. In particular look at a run of r 	 1
zeros. Looking at the state vectors this happens if an only if the state 0 ����� 0� � 	 �	 r � 1 
�� 1 goes

into the state 1 0 ����� 0� � 	 �	 r � 1 
�� . But this is the case since 0 ����� 0� �
	 �	 r � 1 
�� 1 can not go into the all zero

state. Further, within the period p we see the state 0 ����� 0� �
	 �	 r � 1 
�� 1 exactly once. By a

similar argument we see that there can not be a run of � r 	 1 
 ones. Since 1 ����� 1� � 	 �	 r � 1 
�� 0

has to go to the all one state and can not go to 0 1 ����� 1� �
	 �	 r � 1 
�� . Finally look at runs of

length r. Note first that there can not be runs longer than r since otherwise the
LFSR would be stuck either in the all one or in the all zero state. And further
within the period p we see the all one state exactly once but not the all zero state.

In order now to convert these occurrences into probabilities we just have to
normalize by their total count. This total count is equal to

r � 2

∑
l � 1

2 � 2r � 	 l � 2 
 � 2  2 �
r � 2

∑
i � 1

2i  2r � 1

�
Dividing the individual occurrences by this sum results in the claim.

Example 10. Choose g0 � D 
  1 and c � D 
  1 � D3 � D4. Using long division,
we get that G � D 
� 1

1 � D3 � D4 has the following expansion

1 � D3 � D4 � D6 � D8 � D9 � D10 � D11 � D15 � D18 � D19 � D21

�����
We know from Lemma 1 and 3 that this expansion is periodic with period at most
24 	 1  15. From the explicit expansion of the first 22 terms we see that the
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period is indeed 15. Running over one period we get the following picture.

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0��� � ������� �
1 2 2 1 1 1 4 3

Also shown are the beginnings of all runs as well as their lengths. We see that
there are fours runs of length one, two runs of length two, one run of length three
and one run of length 4, in exact agreement with Lemma 7.

Lemma 8. [Correlation Property-R.3] Consider the output of a MLSR of memory
r and period p  2r 	 1. Compare now two shifted versions of this output. Then
the two versions will agree at a given bit position with probability 2r ! 1 � 1

2r � 1 .

Proof. See Exercise 3.3.

6. SLIGHTLY MORE CAREFUL ANALYSIS

We are now ready to start a more careful analysis of a spread spectrum system.

Let the elements of the data sequence of a given user be denoted by ui, with
ui
� � �

1 � . Assume that we spread by a factor of N, i.e., one symbol period T
is split into N chip periods Tc. Let xn denote the elements of the data sequence
up-sampled by a factor N, i.e.,

xn :  u � n
N � � xn

� � �
1 � �

We multiply this upsampled data sequence xn by a complex valued signature se-
quence

sn  1� 2
� sI

n � jsQ
n 
 �

For the purpose of our analysis we will think of the components sI
n and sQ

n as
independent flips of a fair coin, taking values in � �

1 � . In practice, of course,
these sequences are generated by LFSRs as discussed in the previous section. The
sequence of elements xnsn is sent through a pulse generator which generates pulses
of energy � Ec (where Ec is the energy per chip period) and the resulting pulse
train is passed through a unit norm transmit filter h � t 
 . Therefore the baseband
signal is given by � Ec ∑

n
xnsnh � t 	 nTc 
 �

Finally, this signal is up-converted. The whole transmitter is shown in Fig. 3.8.
This is what is called a QPSK SS transmitter. We get the BPSK SS transmitter as a
special case if we set sQ

n  0. We can represent this transmitter in a more compact
way if we introduce the equivalent impulse response

gi � t 
� 1� N

N � 1

∑
n � 0

siN � nh � t 	 nTc 
 �
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un

e2 � j f0t ���

�impulse
generator gi � t 
 � 2Re � � �

� E

T

xn

sn

�

e2 � j f0t ���

�impulse
generator

w � t 

h � t 
 � 2Re � � �

� Ec 
�

E
N

Tc

Figure 3.8: The basic QPSK SS transmitter. The function gi � t 
 is the equivalent
impulse response.

It is a function of the time index i as well as the user index. In terms of this
equivalent impulse response gi � t 
 the baseband signal can also be written as

� E ∑
i

uigi � t 	 iT 
  � E ∑
i

ui
1� N

N � 1

∑
n � 0

siN � nh � t 	 iT 	 nTc 



�

E
N ∑

i

N � 1

∑
n � 0

xiN � nsiN � nh � t 	 iT 	 nTc 



�

E
N ∑

n
xnsnh � t 	 nTc 
 �

The model depicted in Fig. 3.8 shows that QPSK SS is just antipodal modula-
tion, where the impulse gi � t 
 changes for each data symbol ui. Hence, the receiver
for the AWGN channel is the matched filter receiver shown in Fig. 3.9.

This receiver minimizes the probability of error, assuming no intersymbol
interference at the MF output (sample times). We will now investigate this receiver
more closely. We assume that

Rh � nTc 
� 0 � n nonzero integer �
where

Rh ��� 
  � ∞

� ∞
h � t 
 h � t � � 
 dt �
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� 2h � � t 
 g
�
i � 	 t 


e � j 	 2 � f0t � ˜� 

�

t0 � iT

MF slicer

ideally 0ideally �

ûi

0

�
1

�
1

� �
	 �
down conversion

Figure 3.9: Receiver.

From now on we will consider the baseband equivalent model shown in Fig. 3.10.

6.1 STATISTIC OF MATCHED FILTER OUTPUT

In order to determine the performance of the system note that up to the input
of the slicer the system is linear. Hence, the contributions stemming from (i)
other users, (ii) the user of interest, (iii) background noise, can be considered
separately. We will now consider each of these components in detail. In order to
avoid a flood of indices we will use the following convention. There are k users
in the system. Without loss of generality we will focus on the receiver for the
first user. This user has an information sequence with elements ui, an upsampled
information sequence with elements xn and a signature sequence with elements sn.
When we consider the output of the matched filter as a result of the transmission
of some other user j, j � 2 � ����� � k, we will denote the quantities pertaining to his
transmission by ˜. E.g., his upsampled data sequence will be denoted by x̃n.

(i) Other users: Consider the situation depicted in Fig. 3.11. Let r̃ � t 
 denote
the signal corresponding to some other user j, 1 
 j � k,

r̃ � t 
�
�

E
N ∑

n
x̃ns̃nh � t 	 nTc 	 t̃ 
 �

where t̃ accounts for the time difference between the users (we use the receiver
time of the first user as reference). We have

b � t 
 
� ∞

� ∞
r̃ � t 	�� 
 h � 	 � 
 d �


� ∞

� ∞

�
E
N ∑

m
x̃m s̃mh � t 	�� 	 mTc 	 t̃ 
 h � 	 � 
 d �


�

E
N ∑

m
x̃ms̃mRh � t 	 mTc 	 t̃ 
 �
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h � 	 t 
 1� N

	 i � 1 
 N � 1

∑
n � iN

cn

s
�
n

�
nTc

cn yi�

what the pulse of ui “sees”

g
�
i � 	 t 


iT

e � j ˜�

0

ûi

� �
	 �
actual implementation

is a correlator

�

ui
impulse
generator

gi � t 


e j �

�

Figure 3.10: Equivalent baseband model.
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h � 	 t 
 1� N

	 i � 1 
 N � 1

∑
n � iN

cn

s
�
n

�
nTc

b � t 
 bn cn yir̃ � t 


Figure 3.11: The output of the matched filter of the first user as a result of the
received signal r̃ � t 
 from some other user j, 1 
 j � k.

Define bn :  b � nTc 
 . Then

bn  b � nTc 
�
�

E
N ∑

m
x̃ms̃mRh ��� n 	 m 
 Tc 	 t̃ 
 �

The output of the matched filter is therefore

yi  1� N

	 i � 1 
 N � 1

∑
n � iN

cn

 1� N

	 i � 1 
 N � 1

∑
n � iN

bns
�
n

 1� N

	 i � 1 
 N � 1

∑
n � iN

�
E
N ∑

m
x̃m s̃mRh ��� n 	 m 
 Tc 	 t̃ 
 s �n

l � n � m � E ∑
l

Rh � lTc 	 t̃ 

�

1
N

	 i � 1 
 N � 1

∑
n � iN

x̃n � l s̃n � ls
�
n
�

 � E ∑
l

Rh � lTc 	 t̃ 
 � i � l �
where

� i � l :  1
N

	 i � 1 
 N � 1

∑
n � iN

x̃n � l s̃n � ls
�
n� �
	 ��

n � l
�

Note that � � �
n � l �  0 and that

��� �
n � l � �

n � l � 	��� x̃n � l x̃
�
n � l s̃n � l s̃

�
n � ls

�
nsn

�  1 �
Moreover,

�
n � l � � 	 n � 1 
 � l � ����� is an i.i.d sequence. Furthermore,

� � � i � l � �i � k �  1
N2

	 i � 1 
 N � 1

∑
n � iN

	 i � 1 
 N � 1

∑
m � iN

� � �
n � l � �

m � k �� �
	 �
1 iff n  m and l  k


�

l � k

N �
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This shows that � i � l and � i � k are uncorrelated if l � k. It follows that

� � yi y
�
i �  E ∑

l
∑
k

Rh � lTc 	 t̃ 
 Rh � kTc 	 t̃ 
 � � � i � l � �i � k �� �
	 �
�

l ! k
N

 E
N ∑

l

�Rh � lTc 	 t̃ 
 � 2 �
Since � � yi �  0, the contribution of user j, 1 
 j � k, to the slicer input of the first

receiver has zero mean and variance � 2
j :  E 	 j 


N ∑l �Rh � lTc 	 t j 
 � 2.

We can assess the influence of the j-th user on the receiver of the first user
in the following alternative way. For this assume that the relative time shift of the
j-th user is uniformly distributed in � 0 � Tc 
 . Consider the complex pulse train

w̃ � t 
�
�

Ec

2 ∑
n

x̃n � s̃I
n � js̃Q

n 

� � t 	 nTc 
 �

as shown in Fig. 3.8. As we have seen in Exercise 3.4, the randomized pulse
train w̃ � t � � 
 is a WSS process with power spectral density equal to Ec

Tc
. At

the transmitter this process is now sent through the transmit filter which has im-
pulse response h � t 
 , so that the output process has power spectral density equal to
Ec
Tc
�H � f 
 � 2. Consider now this WSS process at the input of the receiver. We first

send this process through a filter with impulse response h � 	 t 
 . Therefore, at the
point of the sampler we see a zero mean WSS process with power spectral density
equal to Ec

Tc
�H � f 
 � 4, call this process b � t 
 . If we sample b � t 
 then the variance of

the sample, call it bn, is equal to Rb � 0 
 , which by definition, is equal to

Rb � 0 
�
� ∞

� ∞
Sb � f 
 d f  Ec

Tc

� ∞

� ∞
�H � f 
 � 4d f �

Now consider yi, which is equal to

1� N

	 i � 1 
 N � 1

∑
n � iN

s
�
nbn �

Since
1
N
� � bn s

�
nb

�
msm � 

�
Ec

NTc

� ∞

� ∞ �H � f 
 � 4d f � n  m �
0 � n � m �

it follows that yi has variance equal to

Ec

Tc

� ∞

� ∞
�H � f 
 � 4d f  E

NTc

� ∞

� ∞
�H � f 
 � 4d f

Parseval E
NTc

� ∞

� ∞
R 2

h � � 
 d � �
This is compatible with our previous analysis, in which we got E

N ∑l �Rh � lTc 	 t̃ 
 � 2.
Indeed we just get the expected value over all possible shifts.
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(ii) User of interest: The only difference to the preceding analysis is that now
x̃ns̃n  xnsn for all n. We claim that in this case

yi  � ERh � t1 
 ui � zi �
where zi has zero mean and variance � 2

1 :  E
N ∑l �� 0 �Rh � lTc 	 t1 
 � 2. To see this

claim first look at the case l  0. Then we have

� i � 0  1
N

	 i � 1 
 N � 1

∑
n � iN

xnsns
�
n

 1
N

	 i � 1 
 N � 1

∑
n � iN

xn

 1
N

	 i � 1 
 N � 1

∑
n � iN

ui

 ui �
For l � 0 the analysis proceeds exactly as before and the claim follows.

Example 11. Consider the case shown in Fig. 3.12. Assume that 0 � t1

 Tc.

h
�
t �

t

1�
Tc

Tc

Rh
� � �

��
Tc Tc

1

Figure 3.12: Rectangular transmit filter.

Then � ERh � t1 
� � E � 1 	 t1
Tc

 �

The variance of the noise stemming from some user j, 1 
 j � k, is then

E
N ∑

l

�Rh � lTc 	 t j 
 � 2  E
N

�
�Rh � 	 t j 
 � 2 � �Rh � Tc 	 t j 
 � 2 �

 E
N


 �
1 	 t j

Tc � 2

�
�

t j

Tc � 2 �
 E

N



1 	 2t j

Tc
�

2t2
j

T 2
c

�
�
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Tc � 2 Tc

t j

1
2

1

Alternative, we can calculate this quantity assuming that the relative time shifts
are uniformly distributed in the range � 0 � Tc 
 , in which case we get

E
NTc

� ∞

� ∞
�H � f 
 � 4d f

Parseval E
NTc

2
� Tc

0
� 1 	 �

Tc

 2d � x � � � Tc 2E

N

� 1

0
� 1 	 x 
 2dx  2E

3N �
The variance stemming from the transmission of the user herself is equal to

E
N ∑

l �� 0

�Rh � lTc 	 t1 
 � 2  E
N
�Rh � Tc 	 t1 
 � 2  E

N

�
t1
Tc � 2

�

(iii) Finally, consider the effect of the background noise. Recall that the base-
band equivalent noise has a (two-sided) power spectral density of N0 and that the
equivalent transmit filter gi � t 
 has unit norm. It follows that the contribution of the
background noise to the slicer input of the first user is a complex valued Gaussian
random variable with zero mean and variance � 2

N equal to

� 2
N  N0

� ∞

� ∞
� gi � t 
 � 2dt  N0 �

We summarize: The output of the matched filter at time i has the form

yi 
�

E � 1 
 Rh � t1 
 ui � zi �

where zi is a zero mean random variable with variance

� 2 :  E � 1 

N ∑

l �� 0

�Rh � lTc 	 t1 
 � 2 �
k

∑
j � 2

E � j 

N ∑

l

�Rh � lTc 	 t j 
 � 2 � N0 �

Alternatively, as discussed above, if we think of t j as a random variable uniformly

distributed in � 0 � Tc 
 , then we can replace E 	 j 

N ∑l �Rh � lTc 	 t j 
 � 2 by E 	 j 


NTc

� ∞

� ∞ �H � f 
 � 4d f .
In a typical scenario the interference caused by other users is the dominant effect.
In this case we will assume that the variance of the noise is given by

� 2 



k

∑
j � 2

E � j 

NTc

� � ∞

� ∞
�H � f 
 � 4d f �
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h
�
t �

t

� W

1
W � Tc

H
�
f �

f� W
2

W
2

1�
W

Figure 3.13: Specific transmit filter.

Example 12. Let h � t 
 be as given in Fig. 3.13. If Tc  1
W then there is no ISI.

Then we have � ∞

� ∞
�H � f 
 � 4d f  W

1
W 2 

1
W
 Tc �

Example 13. [Optimality of Transmit Filter With Flat Spectrum] Suppose �H � f 
 � 
0 for � f � � W

2 and
� ∞

� ∞ h2 � t 
 dt  1. Then by the Schwarz inequality3 we get
 � W
2

� W
2

�H � f 
 � 4d f � 
 � W
2

� W
2

d f � �
� � W

2

� W
2

�H � f 
 � 2d f � 2

 1 �
We conclude that � W

2

� W
2

�H � f 
 � 4d f � 1
W
 Tc �

with equality iff �H � f 
 � 2  1
W for � f � � W

2 . Hence, for bandlimited spectrum the
constant H � f 
 minimizes the variance stemming from signals from other users.

INTERPRETATION OF VARIOUS INTERFERENCE TERMS

Recall that the received signal of the user of interest is equal to

r � t 
� � E ∑
i

uigi � t 	 iT 
 �
3Let f and g be real valued square integrable functions and define � f � : ��� � f 2. For any real

valued pair of numbers � and � define h ��� f � � g. We then have

0 ��� h � 2 ��� 2 � f � 2 � � 2 � g � 2 � 2 �	� 	 f g 
Let � : �
� g � and � : ��� f � . Then this reads

0 ��� h � 2 � 2 � f � 2 � g � 2 � 2 � f ��� g � 	 f g 
If � f ��� 0 ���� g � we conclude that � f g �
� f ��� g � , and it is easy to check that the same conclusion
holds if either � f � � 0 or � g � � 0.
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Let’s assume that N  4 and that we use a rectangular transmit filter. A short
segment of the transmitted signal is then shown in Fig. 3.14. Let’s first assume

�
i
�

1 � N iN
�
i � 1 � N

t

Tc

T

uigi
�
t � � Ec

Figure 3.14: A short segment of the transmitted signal r � t 
� � E ∑i uigi � t 	 iT 
 .

that t1  0, i.e., that we have perfect synchronization. For the l-th time step the
receiver then correlates the received signal � E ∑i uigi � t 	 iT 
 with gl � t 	 lT 
 . (in
the figure we assume that ul  1.

�
i
�

1 � N iN
�
i � 1 � N

t

t

uigi
�
t �� Ec

� Ec gi
�
t �

Since we assumed that Rh � nTc 
  0, for n a non-zero integer, it follows that the
result of this correlation is equal to � Eui, which is just the desired signal. Assume
next that we have an offset of t1.
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�
i
�

1 � N t1
�
i � 1 � N

t

t

uigi
�
t �� Ec

� Ec gi
�
t �

In this case each component of gl � t 	 lT 
 , i.e., each signal 1
N h � t 	 lT 	 nTc 
 will

have a correlation with its counterpart in the signal r � t 
 of � ENRh � t1 
 ui. Since
there N such contributions, the received signal in this case is equal to � ERh � t1 
 ui.
The factor Rh � t1 
 is always less than one and represents the penalty for non-perfect
synchronization. In addition, each component of gl � t 	 lT 
 will, in general, have
a non-zero correlation also with any of the other components of r � t 
 . This gives
rise to the term E

N ∑l �� 0 �Rh � lTc 	 t1 
 � 2.

A very similar picture applies if we want to interpret the variance terms which
stem from the interference from other users.

6.2 PROBABILITY OF ERROR ANALYSIS

Let’s perform a sanity check. Let’s assume that the total variance of the noise is
given by the approximation

� 2 



k

∑
j � 1

E � j 

NTc

� � ∞

� ∞
�H � f 
 � 4d f �

i.e., we assume that the background noise as well as the noise stemming from
the transmission of the user himself is negligible. If we assume that we transmit
over a bandpass channel of bandwidth W then the optimal transmit filter is the one
which is flat over the whole frequency region as we saw in Example 13. Further,
we assume that the received energy per symbol of all users are identical and equal
to E. In this case the variance of the noise is easily seen to be � k 	 1 
 E

N . The signal
of interested is

� � E (here we assume that we have perfect synchronization so that
t1  0). If we further assume that the noise is complex symmetric Gaussian then
the variance per dimension is equal to � k 	 1 
 E

2N and if we were to decide on a
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symbol by symbol basis we would incur a bit error probability of

Q

�
d

2 � �  Q


 �
2N

� k 	 1 

�
�

Consider an antipodal transmission scheme with energy E and background noise
of power spectral density equal to N0

2 . In this case the error probability is equal to

Q


 �
2E
N0

�
�

Therefore, N
k � 1 corresponds to E

N0
. Assume now that we employ a code with a

redundancy of r. E.g., if r  1
2 this means that for every information bit there are

actually two transmitted bits. The energy expended per information bit is then
equal to Eb  1

r E, so that Eb
N0
 E

rN0
 N

r 	 k � 1 
 . Assume that our information rate is

R bits per seconds and that Tc  1
W . The transmission rate is then equal to R

r bits
per second and T  r

R . It follows that N  T
Tc
 rW

R and therefore

Eb

N0
 E

rN0
 N

r � k 	 1 
 
W � R
k 	 1 �

As discussed in the introduction of this section, depending on e.g. the channel
model, the coding scheme, or the desired probability of error there exists a number�

Eb
N0
�

req.
so that our condition on the number of supportable users will be

W � R
k 	 1 �

�
Eb

N0 � req.
� � k 	 1 
 � W � R�

Eb
N0
�

req.
�

This is the same result we got with our rough estimate in the introduction.

EXERCISES

3.1. Let G1 � D 
 and G2 � D 
 be generating functions of two sequences and define
G � D 
  G1 � D 
 � G2 � D 
 . Show that if G1 has period p1 and G2 has period p2 then
G has period p  p1 p2.

3.2. Proof Lemma 5.

3.3. Proof Lemma 8.

3.4. Consider all the following steps carefully. The sequence w � t 
 shown in
Fig. 3.8 is a complex-valued random pulse train. Ideally, each pulse has zero



6. SLIGHTLY MORE CAREFUL ANALYSIS 85

width and unit “area”. In practice one has to be content with finite width pulses.
To see the effect of such a finite width pulse assume that

w � t 
�
�

Ec

2 ∑
n

xn � sI
n � jsQ

n 
 f � � t 	 nTc 
 �

where

f � � t 
 : 
�

1� � � t � � �
2 �

0 � � t � � �
2 �

The autocorrelation of w � t 
 is then

Rw � t � s 
  � � w � t 
 w � � s 
 �
 � � wI � t 
 wI � s 
 � wQ � t 
 wQ � s 
 � � j � � 	 wI � t 
 wQ � s 
 � wQ � t 
 wI � s 
 �
 � � wI � t 
 wI � s 
 � wQ � t 
 wQ � s 
 � �

The second step follows since

� � wI � t 
 wQ � s 
 �  Ec

2
�
� �

∑
n

xnsI
n f � � t 	 nTc 
 � �

∑
m

xmsQ
m f � � s 	 mTc 
 � �

 Ec

2 ∑
n �m f � � t 	 nTc 
 f � � s 	 mTc 
 �

��
� xnxm � � sI

nsQ
m
�� �
	 �

0

���
�

 0 �

and in the same way we see that � � wQ � t 
 wI � s 
 �  0. Since

� � sI
nsI

m
� 	� � sQ

n sQ
m
�  � n �m �

we get Rw � t � s 
  Ec ∑n f � � t 	 nTc 
 f � � s 	 nTc 
 . Note that w � t 
 is not WSS but
cyclostationary with period Tc. But if we add a random phase, i.e., if we consider
the random process z � t 
 :  w � t � � 
 with

�
uniformly distributed over � 0 � Tc 
 then

for this process we get

Rz � t � s 
  � � wI � t 
 wI � s 
 � wQ � t 
 wQ � s 
 �
 2 � � wI � t 
 wI � s 
 �

 Ec �
�
∑
n

f � � t � � 	 nTc 
 f � � s � � 	 nTc 
 �
 Ec

Tc

� ∞

� ∞
f � � r � t 
 f � � r � s 
 dr

 Ec

Tc

� ∞

� ∞
f � � r 
 f � � r � � s 	 t 
�
 dr

 Rz � t 	 s 
 �
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Rz
� � �

�� �
2

�
2

Ec
Tc �

Figure 3.15: Autocorrelation function of the random pulse train z � t 
 :  w � t � � 

generated by finite width pulses. Hereby,

�
is a random offset which is uniformly

distributed over � 0 � Tc 
 .

which shows that w � t � � 
 is a WSS random process. Further, the autocorrelation
function Rz � t 	 s 
 is easily determined to be the one shown in Fig. 3.15. As the
pulse width � converges to zero this autocorrelation function Rz � � 
 converges to
Ec
Tc

� ��� 
 .
3.5. This exercise deals with a simple yet powerful bounding technique called
the Chernoff bound. Let X1 � ����� � Xn be a set of n i.i.d. random variables. We are
interested to bound Pr � ∑n

i � 1 Xi � � � . Verify the following steps, where s � 0,

Pr �
n

∑
i � 1

Xi � � �  Pr � es∑n
i � 1 Xi � es

�
�

� min
s � 0

� � es∑n
i � 1 Xi �

es

�
 min

s � 0
� � esX1 � ne � s

�
�

Now let X be binary taking values in � �
1 � with equal probability. How do you

have to choose � (as a function of n) such that you get an exponential bound, i.e.,
a bound of the form e � nc for some strictly positive constant c. How do you have
to choose � (as a function of n) such that the right hand side is a constant but can
be made arbitrarily small? Next let Xi � N � 0 � � 2 
 . What do you get now? For
the Gaussian case can you determine the probability exactly? How do the results
compare?

3.6. Assume that we allow each user to scale his input signal by a factor � , � � 1.
In the interference limited case, how does this effect the system performance?

3.7. In the main text we assumed that the signature sequences sn are complex
valued of the form sn  1� 2

� sQ
n � jsI

n 
 , where sQ
n , sI

n are sequences taking values

in � �
1 � . Assume now that sn is real valued taking values in � �

1 � . Retrace the
steps of our analysis. How large is the noise variance? Assume that the system is
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interference limited. How does the number of supportable users change compared
to the complex valued case?

3.8. In our analysis we allowed complex valued signatures but we restricted our
data sequence to take elements in � �

1 � . Assume now that we allow our data
sequence to take on the four values 1� 2

� �
1

�
j � . Assume again the interference

limited case. Assume that no coding is used and that we decide symbol by symbol.
Can we support a higher rate with such a system compared to the system we
analysed in class?

3.9. In class we investigated the use of spread-spectrum as a multiple-access prob-
lem. In this problem we will see that spread-spectrum can also be used to make
signals less sensitive against jammers (malicious or spurious interfering signals.)

Assume we have a spread-spectrum system with a single user. This user
transmits the signal

x � t 
�
�

E
N ∑

n
xnsnh � t 	 nTc 
� � E ∑

i

uigi � t 	 iT 
 �

where

gi � t 
� 1� N

N � 1

∑
n � 0

siN � nh � t 	 nTc 
 �

and where sn is an i.i.d. sequence of complex valued random variables with zero
mean and unit modulus (norm). Assume further that h � t 
 is as shown below.

h
�
t �

t

� W

1
W � Tc

H
�
f �

f� W
2

W
2

1�
W

Assume that the received signal is equal to

y � t 
�
�

E
N ∑

n
xnsnh � t 	 nTc 
 � Z � t 
��� E ∑

i

uigi � t 	 iT 
 � Z � t 


where Z � t 
 is a WSS complex-valued circularly-symmetric Gaussian process with
zero mean and power spectral density as shown below.

� W
2

W
2

�
f0 f0

SZ
�
f �

f

B
N0W
2B
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Let yi be the sampled output at the matched filter, i.e.,

yi : 
�

y � t 
 g �i � t 	 iT 
 dt 
�

x � t 
 g �i � t 	 iT 
 dt �
�

Z � t 
 g �i � t 	 iT 
 dt �
1. Show that the total power of the noise Z � t 
 is equal to WN0.

2. We claim that
yi  � Eui � zi �

where zi is a a sequence of i.i.d. random variables which are complex-
valued, circularly-symmetric Gaussian with zero mean and variance N0. To
prove the claim proceed as follows.

(a) Show that the signal portion
�

x � t 
 g �i � t 	 iT 
 dt is equal to � Eui.

(b) Show that zi 
�

Z � t 
 g �i � t 	 iT 
 dt is equal to

zi :  1� N

N � 1

∑
n � 0

s
�
iN � nWiN � n � (3.3)

where
WiN � n : 

�
Z � t 
 h � t 	 iT 	 nTc 
 dt � (3.4)

(c) Starting from (3.4), show that the random variables WiN � n are (depen-
dent) complex-valued circularly-symmetric Gaussian random variables
with zero mean and variance N0.

(d) Conclude from (3.3) that zi is a sequence of i.i.d. random variables
which are complex-valued, circularly-symmetric Gaussian with zero
mean and variance N0.

This shows that even though the interfering signal is concentrated around
a particular frequency f0, the effect is equivalent to the effect of an inter-
ferer which spreads its power uniformly over the whole frequency band of
interest.



4

HOW TO GET CLOSE TO CAPACITY: CLUES

FROM INFORMATION THEORY

In the information theory class you have learned all about channel capacity for
various channels (like the binary symmetric channel or the discrete-time additive
white Gaussian noise channel) whereas in this digital communications course we
have been mostly concerned with particular transmissions schemes for the linear
time-invariant Gaussian noise channel, in particular the class of pulse-amplitude
modulation schemes. In this chapter we will explore somewhat the connections
between these two views. In particular, we will see that information theory not
only gives us bounds on the rates at which we can transmit reliably but also indi-
cates how these rates can be approached in practice with low-complexity schemes.

For the most part we will only discuss linear time-invariant channels with ad-
ditive Gaussian noise but similar statements can be made for more general chan-
nels like e.g. fading channels.

1. THE LINEAR TIME-INVARIANT GAUSSIAN CHANNEL

Consider the linear time-invariant channel with additive Gaussian noise described
by

Y � t 
� X � t 
�� h � t 
 � Z � t 
 �
Hereby, X � t 
 is the input to the channel and we restrict this input via either a peak
or an average power constraint P. The channel is characterized by its impulse
response h � t 
 or, equivalently, its spectrum H � f 
 , and Z � t 
 is a real-valued wide
sense stationary Gaussian process with double-sided power spectral density equal
to N0

2 . Note that we assumed that the power spectral density is flat. This entails
no essential loss of generality as can be seen by the following argument. Consider

89
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a general power spectral density SZ � f 
 . First, note that we can freely change
SZ � f 
 outside the support of H � f 
 , i.e., for those frequencies for which H � f 
� 0.
Further, within the support of H � f 
 we can assume that SZ � f 
 is strictly positive
almost everywhere since otherwise if SZ � f 
 were zero over a measurable range
within the support of H � f 
 then it is easy to see that the capacity of such a channel
would be infinite. In practice we are always transmitting over a finite frequency
range, and therefore with the extra assumption that SZ � f 
 is strictly bounded away
from zero in this finite range of interest it follows that there exists a whitening
filter. Since this whitening filter is further invertible it follows that, instead of the
original channel we can consider the concatenation of the original channel with
the whitening filter and that this new channel has the same capacity (since the
operation of whitening the noise is invertible).

We are concerned with the following two basic questions: (i) What is the
maximal rate of information at which we can transmit reliably over this channel.
(ii) How can we approach this rate by low complexity techniques.

Our derivation will be quite heuristic but it essentially tells the right story. A
rigorous derivation can be found in the book by Gallager.

2. CAPACITY OF THE LINEAR TIME-INVARIANT GAUSSIAN CHAN-
NEL

We will start by answering question (i) concerning the capacity. We will do so by
relating the capacity of the general linear time-invariant Gaussian noise channel
to the capacity of the much simpler discrete-time additive white Gaussian noise
channel.

2.1 DISCRETE TIME GAUSSIAN CHANNEL

First recall from your information theory class that if Z � N � 0 � � 2 
 then its dif-
ferential entropy, call it h � Z 
 , is equal to

h � Z 
 
�
	 pZ � x 
 ln pZ � x 
 dx


�

pZ � x 

�

1
2 � 2 x2 	 ln

1� 2 ��� 2 � dx

 1
2 � 2

�
pZ � x 
 x2dx � ln � 2 ��� 2

�
pZ � x 
 dx

 1
2 �

1
2

ln � 2 ��� 2 


 1
2

ln � 2 � e � 2 
 nats

 1
2

log � 2 � e � 2 
 bits �
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Further, if X is any zero-mean continuous random variable with density pX � x 
 and
variance � 2 then h � X 
 � h � Z 
� 1

2 log2 � 2 � e � 2 
 bits since

0 � D � pX � pZ 



�
pX � x 
 ln pX � x 
 dx 	

�
pX � x 
 ln pZ � x 
 dx

 	 h � X 
 �
�

pX � x 

�

1
2 � 2 x2 	 ln

1� 2 ��� 2 � dx

 	 h � X 
 �
�

pZ � x 

�

1
2 � 2 x2 	 ln

1� 2 ��� 2 � dx

 	 h � X 
 � h � Z 
 �
Consider now the discrete-time channel

Yn  Xn � Zn �

where Xn is the real-valued channel input with average energy constraint � � X 2
n � �

E and Zn is an i.i.d. sequence of real-valued zero-mean Gaussian random variables
with variance � 2.

In the information theory class you have learned that the capacity of this chan-
nel is equal to

C  max
p 	 x 
 : � � X2 ��� E

I � X ;Y 


 max
p 	 x 
 : � � X2 ��� E

�
h � Y 
 	 h � Y �X 
��

 max
p 	 x 
 : � � X2 ��� E

� h � Y 
 	 h � X � Z �X 
��

 max
p 	 x 
 : � � X2 ��� E

� h � Y 
 	 h � Z �X 
��

 max
p 	 x 
 : � � X2 ��� E

� h � X � Z 
�� 	 h � Z 


 1
2

log 
 2 � e � E � � 2 
 � 	 1
2

log 
 2 � e � 2 �
 1

2
log

�
1 � E

� 2 � bits per channel use �
Similarly, if we assume that the Xn are complex-valued with average energy con-
straint � � X2

n � � 2E and that Zn is an i.i.d. sequence of complex-valued circularly-
symmetric zero-mean Gaussian random variables with variance 2 � 2 then the ca-

pacity is log
�
1 � E� 2 � bits per channel use. To see this we can either retrace our

previous steps and calculate the mutual information directly or we can recall that
in the circularly symmetric case we can think of one complex dimension as simply
two real-valued dimensions.
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2.2 THE STANDARD BASEBAND CHANNEL

Consider now the standard baseband channel

Y � t 
� � X � t 
 � Z � t 
�
 � h � t 
 �
where h � t 
 is the impulse response of a baseband channel with bandwidth W .

Assume we transmit over this channel over a time period of T seconds. It is
well-known that there are roughly 2WT dimensions in this space and, therefore,
there are roughly 2W dimensions per second. It follows that the average energy
per dimension we can expand is equal to P

2W . Hence, the capacity of this channel
is equal to

2W
1
2

ln



1 �

P
2w
N0
2

�  W ln

�
1 � P

N0W � bits per second �
This is Shannon’s famous formula. If we let the bandwidth go to infinity and use
the fact that ln � 1 � x 
  x � O � x2 
 we see that

lim
W � ∞

W ln

�
1 � P

N0W �  P
N0 �

Next, assume that the bandwidth is W
2 and that the noise is complex with two

sided power spectral density equal to N0 and that the input is complex-valued with
power equal to 2P. In this case we can relate this to the complex valued channel
and we get the same result (half the number of channel instances but twice the
capacity per channel use).

3. THE UNCONSTRAINED CAPACITY VERSUS THE CAPACITY

OF SPECIFIC SIGNALING SETS

Let’s consider again the simplest continuous channel, namely the standard base-
band channel. In this case we have seen that by appropriate signaling and sampling
we can bring this channel model back to a discrete-time channel model. There still
remains one problem however. Looking back at the derivation of the capacity for-
mula it seems that we have to use a signaling alphabet which is “Gaussian.” This
is quite in contrast to all the examples we have seen in class so far, where we
have used simple input alphabets like antipodal signalling or some simple PSK or
QAM schemes. From a practical point of view it is clearly desirable to use such a
simple signaling set. How much do we loose if we do that?

3.1 THE CAPACITY OF SPECIFIC SIGNALING SETS

Let’s start with the simplest one-dimensional signaling scheme – antipodal signal-
ing, i.e., we assume that Xn

� � � � E � and that Zn is real-valued Gaussian with
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variance � 2. Further, we assume that the points
� � E have equal prior. The ca-

pacity of such a signaling scheme is then easily calculated to be

C2 � PAM

�
E
� 2 �  I � X ;Y 


 h � Y 
 	 h � Y �X 

 h � Y 
 	 h � Z 

 	

�
pY � y 
 log pY � y 
 dy 	 1

2
log � 2 � e � 2 
 �

where

pY � y 
� ∑
x

pY � X � y � x 
� 1� 8 ��� 2

�
e �

� y ! � E � 2

2 " 2 � e �
� y

� � E � 2

2 " 2 � �
Unfortunately, there is no elementary solution to the above integral but the capac-

ity C2 � PAM

�
E� 2 � can be evaluated to any desired degree of accuracy numerically.

The result is shown in Fig. 4.1 We see from the above figure that as long as the

1 2 3 4

0.2

0.4

0.6

0.8

1

Figure 4.1: Maximal achievable rate of reliable transmission for antipodal signal-
ing (solid line) and the capacity of the AWGN channel (dashed line) as a function
of E� 2 .

signal-to-noise ratio E� 2 is not too large ( � 1) the loss which we incur by restrict-
ing ourself to antipodal signaling is very small. For large signal-to-noise ratios
this loss can be become arbitrarily large. In this case we have to use larger signal
constellations.

Therefore, lets next look at two-dimensional constellations, i.e., we can think
of Xn as complex valued with average energy equal to 2E and Zn is now complex-
valued and circularly-symmetric with variance equal to 2 � 2. Let the signal set



94CHAPTER 4. HOW TO GET CLOSE TO CAPACITY: CLUES FROM INFORMATION THEORY

be denoted by S  �
s1 � ����� � s2k � , si

� � , where for convenience we have assumed
that the number of signal points is a power of two. Standard choices are PSK
constellations where the points are arranged on a circle or QAM where the points
are arranged on a square grid. As before the capacity for a given constellation S
can be written down in terms of

CS  I � X ;Y 

 h � Y 
 	 h � Y �X 

 h � Y 
 	 h � Z 

 	

�
pY � y 
 log pY � y 
 dy 	 log � 2 � e � 2 
 �

where

pY � y 
� 1
2 ��� 22k

2k

∑
i � 1

e �
� yR ! sR

i � 2

2 " 2 e �
� yI ! sI

i � 2

2 " 2

�
ToDo: Insert plots for various examples.

3.2 MULTILEVEL MODULATION AND THE CHAIN RULE OF MUTUAL IN-
FORMATION

Assume now that we use a larger signal constellation. For simplicity we will
assume that our signal constellation is two-dimensional and we will use as our
running example the 16-QAM constellation shown in Fig. 1.3 but it will be clear
that the same ideas easily apply to a large class of signal constellations.

Assume that our signal constellation S contains 2k points. It is then natural to
label these points by k bits, call them � X 1 ��������� Xk 
 . One such particular labeling
is shown in Fig. 1.3 for the case k  4. Let Sn, Sn

� S , denote the symbol which is
transmitted at time n. We formally specify this labeling by introducing a map � ,� : ˆ� k � S which maps a k-tuple of bits � X 1 ��������� Xk 
 into a point of the constel-
lation S . In general there are 2k! possible such labelings and we will see shortly
how our choice of labeling affects the overall system performance. Our channel
model is now

Yn  Sn � Zn �
where the noise is Gaussian with independent components each with variance � 2.
Hereby we assume the bits to be equally probable. To determine the capacity note
that

I � S;Y 
  I � X1 � ����� � X
k;Y 



k

∑
i � 1

I � X i;Y �X1 � ����� � X
i � 1 
 �

where the last step is simply the well-known chain-rule of mutual information. It
is crucial to notice that the mutual information is independent of the labeling map
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� but that the partitiong of the mutual information into subterms does depend on� . Note that the i-th term on the right expresses the mutual information between
the i-th bit and the received symbol Y , given the previous � i 	 1 
 bits. This can be
given an operational meaning which one can use to design a transmission system.

To be concrete, consider the following specific example with k  2 shown in
Fig. ??. In this case the above formula reads

I � X1 � X2;Y 
� I � X1;Y 
 � I � X2;Y �X1 
 �
The first term can be interpreted as the mutual information between bit X 1 and
the received symbol Y considering channel input X 2 as noise, i.e., as part of the
channel. More precisely, we have

p � y � x1 
  p � x1 � y 

p � x1 


 ∑x2 p � x1 � x2 � y 

p � x1 


 ∑x2 p � x1 � x2 
 p � y � x1 � x2 

p � x1 


 ∑
x2

p � y � x1 � x2 
 p � x2 � x1 


 ∑
x2

p � y � x1 � x2 
 p � x2 


 1
2

 p � y � x1 � x2  0 
 � p � y � x1 � x2  1 
 �

This transition probability depends on the map � . For the two choices of � shown
in Fig. ?? the resulting transition probabilities are shown in Fig. ??.

The second term has a similar interpretation, except that now at the receiver
we have side information X 1, i.e., the term can be interpreted as the mutual infor-
mation between bit X2 and the channel output Y given that X 1 is available at the
receiver.

Now note that both maps shown in Fig. ?? lead to the same overall capac-
ity but that this mutual information is split in different ways between these two
subchannels. This is true in general.

The abvove interpretation gives rise to the following general multilevel scheme.
For a given constellation of size 2k, choose a mapping � . Now this gives rise to k
channels, where the i-th channel has capacity I � X i;Y �X1 � ����� � X

i � 1 
 .

3.3 BIT INTERLEAVED CODED MODULATION

One point in the above multilevel scheme that may raise some concern is the
dependence of the decision of bit X i on the previous decisions. This has two
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consequences. First, once an error is made at level i it is likely that this error will
adversely affect all following levels. This is called error propagation. Therefore,
in order to limit error propagation, one has to ensure that levels are decoded highly
reliably. This usually means large latency.

As we will see now, both these issues can be usually circumvented at a small
cost in transmission rate by using a bit-interleaved coded modulation scheme.
The basic idea of BICM is straightforward. Since, conditioning increases mutual
information we have

I � S;Y 
  I � X1 � ����� � X
k;Y 



k

∑
i � 1

I � X i;Y �X1 � ����� � X
i � 1 


�
k

∑
i � 1

I � X i;Y 
 �
The interpretation of the above inequality is immediate. Rather than first decod-
ing bit X1 and then using this information as side information for decoding bit
X2 and so on, decode all bits in parallel. This obviously avoids the latency and
error propagation problems. On the other hand, each term I � X i;Y 
 is now, in gen-
eral, stricly less than the corresponding term I � X i;Y �X1 � ����� � X

i � 1 
 , i.e., the overall
transmission rate achievable by BICM is, in general, stricly less than the optimal
multilevel scheme. How much is lost now crucially depends on the mapping � ! In
general, a good choice of the mapping � is given by the so called Grey mapping.
This answers the question posed in the beginning. The optimal BICM mapping� is the one which maximizes the sum ∑k

i � 1 I � X i;Y 
 . It turns out that for those
constellations most frequently used surprisingly little is lost by employing BICM
as opposed to the quite more complicated multilevel scheme!

3.4 ITERATIVE DECODING

It is possible to combine the benefits of both of the above schemes, the high
achievable rates of multilevel coding with the simplicity of BICM. This can be
done by using iterative schemes. We will have to postpone our discussion of such
a scheme until we have discussed the general framework of iterative signal pro-
cessing.

4. MULTIPLE-ACCESS CHANNEL

Start with a single-user channel and say that we can split the power into two parts
and that the combined rate is the same. But since there is no coordination neces-
sary between these two parts we can think of the two transmissions as two separate
users. Say that clearly we can not do any better than the obvious bounds from the
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single-user theorem. This gives rise to capacity but also rise to an efficient scheme
which looks like the multilevel scheme. Now discuss the two user case in more
detail.

Compare this with the capacity we can achieve with spread spectrum which
is basically a single-user decoding scheme and which is the equivalent of bit in-
terleaving.

5. TRANSMISSION SCHEMES FOR COLORED NOISE: OFDM

5.1 CONSTRAINED OPTIMIZATION: LAGRANGE MULTIPLIERS

Assume we want to optimize the function f � x � y 
 , f � x � y 
 � � , under the constraint
that g � x � y 
  0. Assume that at � x0 � y0 
 we have a relative extremum of f under
the constraint g. Then we must have

gx � x0 � y0 
 dx � gy � x0 � y0 
 dy  0 � (4.1)

fx � x0 � y0 
 dx � fy � x0 � y0 
 dy  0 � (4.2)

(4.3)

These equations should be interpreted as follows: Equation (4.1) expresses a con-
straint on the allowed direction � dx � dy 
 , i.e., we can e.g. fix dx and then express
dy as a function of dx. For this we have to assume that at least one of gx � x0 � y0 
 or
gy � x0 � y0 
 is unequal to zero. Equation (4.2) on the other hand expresses the usual
condition that the function f has a stationary point at � x0 � y0 
 (with respect to the
allowed direction). In this sense (4.2) does not impose a further restriction on the
allowed direction. Consider now the matrix�

fx � x0 � y0 
 fy � x0 � y0 

gx � x0 � y0 
 gy � x0 � y0 
 �

We claim that this matrix has rank exactly one. To see this, note that it can not have
rank zero by our assumption that at least one of gx � x0 � y0 
 or gy � x0 � y0 
 is unequal
to zero. Further, the matrix can not have rank two since otherwise (4.2) would
impose another restriction on the allowed direction, contrary to our assumption.

The rank deficiency of the above matrix implies that there must be a constant,
call it � such that

fx � x0 � y0 
 � � gx � x0 � y0 
  0 �
fy � x0 � y0 
 � � gy � x0 � y0 
  0 �

and we also still have the constraint g � x0 � y0 
  0. The factor � is called the
Lagrange multiplier.
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In summary, in order to perform the desired constrained optimization consider
the Lagrangian

L � x � y � � 
� f � x � y 
 � � g � x � y 

and look for stationary points of L � x � y � � 
 . This leads exactly to the desired set of
equations.

5.2 PARALLEL GAUSSIAN CHANNELS

Assume we have k parallel Gaussian channels, where the i-th channel has power
constraint Pi and noise variance � 2

i . Clearly, then we can transmit over these
parallel channels at least at rate

k

∑
i � 1

1
2

log � 1 � Pi

� 2
i


 � (4.4)

and, converesly one can show that this is indeed the maximum rate. Assume now
that we have total power P and that we can split up this power into k parts in any
desired way in order to maximize the resulting sum rate.

Therefore, we want to maximize (4.4) under the constraints

Pi � 0 �
k

∑
i � 1

Pi  P�

If, for a second we ignore the non-negativity constraints on the Pi then from
the above section we know that in order to find stationary points we have to look
at the Lagrangian

k

∑
i � 1

1
2

log � 1 � Pi

� 2
i


 � �
k

∑
i � 1

Pi

Taking the derivatives with respect to each Pi we find that

Pi  � 	 � 2
i �

We claim that if we include our non-negativity constraints then the optimial solu-
tion is given by

Pi  � � 	 � 2
i 
 � �

where � is chosen so that ∑k
i � 1 � � 	 � 2

i 
 �  P. This can be verified as follows.
Note that

� � 	 � 2
i 
 � 

�
� 	 � 2

i � � � � 2
i �

0 � otherwise �
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Assume now that we perturb our solution by a vector � dP1 � ����� � dPk 
 , where we
must have dPi � 0 for all those i such that � � � 2

i and ∑k
i � 1 dPi  0. The change

in our function is then equal to

1
2

k

∑
i � 1

dPi

� � 	�� 2
i 
 � � � 2

i �
If we can show that for any vector � dP1 � ����� � dPk 
 which fulfills the constraint the
change in capacity is non-positive then we have shown that our proposed solution
is at least a local maximum. But note that 1	�� � � 2

i 
 � � � 2
i
 1

� if � � � 2
i and is

equal to 1� 2
i
� 1

� otherwise. This shows that the proposed point is at least locally

optimal. The above solution has a nice gemetric interpretation which is known as
waterpouring.

5.3 GENERAL CHANNEL WITH COLORED NOISE

From the above considerations we can give a (heuristic) derivation of the capacity
of a Gaussian noise channel with colored noise. Consider the model

Y � t 
� X � t 
 � Z � t 

where we have again power constraint P and where Z � t 
 is a wide-sense stationary
Gaussian process with power-spectral density equal to N � f 
 .

Consider the channel and split the frequency axis into many small “slices”.
Consider one such slice centered at frequency fi and of width � W . Assuming
that N � f 
 various sufficiently slowly around fi this channel has approximately
constant power spectral density along its region of interest, and this constant is
equal to N � fi 
 . Assume that we assign power Pi to this slice. Then, from our
previous results we know that the capacity of this slice is equal to

� W ln

�
1 � Pi

2N � fi 
 � W � �
where the factor two appears since we assume that N � f 
 is the two-sided power
spectral density.

Proceeding in the same way for all slices we see that the total rate we can
achieve with such a scheme is equal to

∑
i
� W ln

�
1 � Pi

2N � fi 
 � W �
where we must have ∑i Pi  P. If we now let the number of slices tend to infinity
and define P � f 
 as the limit of Pi � � 2W 
 then we see that the achievable rate for
such a scheme is � ∞

� ∞

1
2

ln

�
1 � P � f 


N � f 
 � d f
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As discussed in the previous section, we will achieve maximal sum rate if we
perform water filling in the spectrum. Therefore, for the optimal power allocation
the maximally achievable sum rate is equal to� ∞

� ∞

1
2

ln

�
1 � � � 	 N � f 
�
 �

N � f 
 � d f

where � is chosen such that � ∞

� ∞
� � 	 N � f 
�
 � d f  P�

Note that the above derivation is quite heuristic but essentially correct. For a
more rigorous derivation consult your information theory book.

5.4 OFDM

The above derivation gives rise to the following transmission scheme which is
called orthogonal frequency division modulation. Assume that we mimick in the
transmission process the derivation from above, i.e., we slice the spectrum into
many small parts and essentially transmit over each such slice separately. The
advantage of such a scheme is that over the (small) bandwidth of each slice the
noise spectrum is more or less constant and therefore we do not need sophisticated
equalization techniques to approach the capacity of this slice. On the other hand
there are also the following two disatvantages. First, since the bandwidth of such
a slice is very small the corresponding symbol rate is very small and therefore on
each channel we signal at a very low rate which implies large delays. Second, at
the transmitter we transmit the sum of many (more or less) independet random
signals. This implies that we have a large peak-to-average power ratio. In par-
ticular, assume that P is the average power and that it is split into N parts, each
transmitting at power P � N. To be specific assume that each signal is simply a

complex sinuisoid of the form
�

P
N e2 � j f0t . If at any point in time all signals align

then we get a peak power equal to � N
�

P
N 
 2 compared to the average power of P.

Therefore the peak power can be a factor N larger than the average power which
can cause significant problems in actual systems.

SYSTEM DESCRIPTION

Consider now a specific system. Assume we split the band into equal N width
slices each of bandwidth � W . Let the center frequency in the i-th band be equal
to � f0i. Assume that in the ith band we use standard pulse-amplitude modulation
where we choose the basic signal constellation in such a way that we can transmit
close to capacity over this band. Let T denote the length of one symbol interval.
Consider now the transmitted signal in one such symbol interval. For simplicity
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of notation we will assume that this interval is � 0 � T 
 . The complex baseband
equivalent signal for the i-th frequency slot in this interval has the form

si � t 
 :  xie
2 � j f0 	 i � N ! 1

2 
 t � 0 � t 
 T �
where x represents the information and the shift N � 1

2 ensures that the overall sig-
nal occupies the minimum bandwidth in baseband. The modulating signal xi is
complex valued and typically is an element of one of the standard signaling sets
(PSK, QAM, ...). The overall signal in one basic symbol interval is therefore

s � t 
�
N � 1

∑
i � 0

si � t 
�
N � 1

∑
i � 0

xie
2 � j f0 	 i � N ! 1

2 
 t � 0 � t 
 T �
We first consider the question how we should choose the frequency separation f0

with respect to the symbol interval T . Consider the i-th and the k-th signal. We
claim that these two signals will be orthogonal if we choose f0  1

T . This follows
since


 si � t 
 � sk � t 
 � 
� T

0
xie

2 � j f0 	 i � N ! 1
2 
 t x �ke � 2 � j f0 	 k � N ! 1

2 
 t dt


� T

0
xie

2 � j f0it x
�
ke � 2 � j f0kt dt

 xix
�
k

� T

0
e

2 � j � i ! k � t
T dt


�

0 � i � k �
� xi � 2 � i  k �

Note: As you will see in Exercise 4.4 this is actually not the densest possible spac-
ing but it ensures that the phases are continuous, and therefore this is in practice
the preferred method. With the above choice f0  1

T the signal takes on the form

s � t 
�
N � 1

∑
i � 0

xie
2 � j � i ! N ! 1

2 � t
T  e

2 � j � N ! 1 � t
2T

N � 1

∑
i � 0

xie
2 � jit

T � 0 � t 
 T � (4.5)

EFFICIENT IMPLEMENTATION

At first OFDM might seem a costly approach to transmitting the signal. Typically,
in a receiver the physical components like modulator (which shifts the signal in
the transmission band) and the power amplifier are the most costly components.
For OFDM it seems we need as many as N modulators, and for proposed systems
this N can be as high as 1024. Fortunately this is not the case. Consider again the
OFDM signal as given in equation (4.5). Then we can write it as

s � t 
� e
2 � j � N ! 1 � t

2T

N � 1

∑
i � 0

xie
2 � jit
NTs � 0 � t 
 T �
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where Ts :  T
N . The right hand side of the equation should now look familiar. It

is basically the equation for the discrete fourier transform and it can therefore be
evaluated efficiently, in particular so if N is chosen to be a power of two, which is
virtually always the case in practice.

Ignoring the common factor e
2 � j � N ! 1 � t

2T we therefore get

s � kTs 
 �
N � 1

∑
i � 0

xie
2 � jik

N �

so that we recognize Ts as sampling interval. Is this sampling rate sufficient? Note
that the highest frequency of the signal is of order f0

N
2 . By Nyquist we have

to take samples at most 1
2 f0

N
2
 T

N  Ts apart! This analysis somewhat ignores

the effect of the modulation but it is correct to first order. If we wish to obtain
a higher sampling rate, we can always append a sufficient number of zeros to
the frequency signal and take a fourier transform of larger length at the cost of
increased complexity.

Note that the signal-to-noise ratio can be quite different in each subband.
Therefore, we first have to decide how much of our power we want to allocate for
each frequency slot. As a guideline we can use our waterpouring approach. Next,
given the power allocation we have to decide what modulation we should use in
each band. Again, we can simply use our guidlines from the single carrier case.

PEAK-TO-AVERAGE POWER RATIO

As discussed in the introduction, one practical disatvantage in a multicarrier sys-
tem is its inherent high signal-to-noise power ratio. This stems from the fact that
we chose the signal to be composed of a sum of orthogonal signals, so that the av-
erage power is simply the sum of the average powers of the subsignals but the peak
can (and typically is!) a factor N larger. This causes problems with amplifiers as
well as with regulations in which a maximum peak power is prescribed.

There are several approaches to limit deal with this problem and we will dis-
cuss them now briefly.

The first approach is to restrict the set of N-tuples � x0 � ����� � xN � 1 
 to those
which give a low PAPR. To be precise, assume that all xi live in the same alphabet,
e.g. � �

1 � . We can then restric the set of all 2N N-tuples to those which have a
PAPR of at most c, c � 1. If we choose e.g. c  2, then there is a well studied
set of such sequences, called Golay complementary sequences, see Exercise 4.5.
There are many problems associated with this approach. First, finding the set of
admissable N-tuples is highly non-trivial, and describing them in a compact way
is even more difficult. This is even more true as in general we want to choose the
components xi from different alphabets and these choices might vary with time as
the channel conditions vary.



5. TRANSMISSION SCHEMES FOR COLORED NOISE: OFDM 103

There are more probabilistic approaches to the problem. First note that it is
known that for large N, ”most” N-tuples have a PAPR of approximately ln � N 
 .
Therefore, if ln � N 
 is acceptable then most N-tuples do not violate our constraint.
The violation of the PAPR constraint is therefore a rare event. This means the
following: The cardinality of the set of sequences which PAPR below � ln � N 
 is
roughly speaking equal to the whole space, and so we do not need to decrease our
rate substantially. How can we weed out now the few bad N-tuples. The simplest
approach is to simply clip the transmitted signal. This will add additional ”noise”
to the system which we can counteract by an appropriate choice coding. A more
structure approach is to keep a few spare frequencies distributed in the spectrum.
For every tuple we now choose these spare frequencies in such a way that they
minimize the PAPR. This reduces our rate by the ratio of spare frequencies and
it requires us to solve the optimization problem. Finally, we can introduce at the
transmitter intentionally a small number of ”errors” so that the resulting signal
again fulfills the PAPR requirement. Again, we counteract the effect of these
errors by a proper coding scheme. The last three approaches (or a combination of
them are the most practical).

THE CYCLIC PREFIX TRICK

Recall that the whole motivation for OFDM was the fact that within each narrow
frequency band the channel was approximately constant so that we need no or
only simple equalizers. Nevertheless, in order to use the FFT at the encoder and
decoder we still have to deal with the channel impulse response.

In more detail. Consider the signal s � t 
 in one symbol interval. Assume that
the signal is sent through a channel with impulse response h � t 
 and that we add
AWGN with double sided power spectral density equal to N0 (everything here
is complex valued). Since we are looking at the complex baseband equivalent
model which has bandwidth approximately equal to N

2T (ignoring the effect of the
modulation signal and the effect of filtering) we can at the receiver first perform
a low pass filtering with the equivalent bandwidth to reject out of band noise and
then sample the signal with samples taken roughly T

N second apart. The effect of
this operation is that we are now dealing with a discrete time model

sn  ∑
k

hksn � k � zn ��� i  0 � ����� � N 	 1 �
We now like to take the invers fourier transform (which is an orthogonal transform
and therefore keeps the noise invariant) to get back to the (noisy) versions of the
transmitted symbols. The problem with this transition occurs at the boundaries.
Adjacent symbols will ”bleed” into the interval under consideration and cause
intersymbol interference. The standard approach to dealing with this problem is
to keep ”guard” intervals between adjacent symbol intervals and to send in these
guard intervals a cyclic extension of the signal whose size is at least equal to the
length of channel response. Since the cyclic convolution of two signals of length
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N is equal to the multiplication of their respective (length N) signals, this trick
eliminates intersymbol interference, although at the cost of a decrease in rate.

EXERCISES

4.1. In class we considered the capacity region for the two-user multiple-access
channel. Trusting your intuition, write down the set of inequalities defining the
capacity region for the three-user case. You can do this either in terms of (con-
ditional) mutual informations or for the specific case of the Gaussian multiple-
access channel. Can you sketch a “typical” such region. (In two dimensions
this region was a pentagon.) Is there again a similar interpretation of the “corner
points.”

4.2. Consider now the capacity region of a k-user multiple access channel and
assume (as we always have done) that all users are synchronized, i.e., they have
access to a common clock. Argue that in this case the capacity region has to be
convex, i.e., if R  � R1 � ����� � Rk 
 and R �  � R �1 � ����� � R

�k 
 are achievable rate tuples
then for any � � � 0 � 1 � also � R � � 1 	 � 
 R � is achievable.

4.3. For part of this exercise you will need computer access. You can form groups
and if you hand in the solution to this exercise you will get extra credit. If you
do not have computer access but want to do this exercise let us know. It might
be handy to know that in Mathematica you can use the following commands:
NIntegrage � f � x � � � x � xmin � xmax � � gives you the (numerical) integral of the func-
tion f � x � .

Consider 4-PAM mudulation with the points � 	 3 ��	 1 � 1 � 3 � and the following
two labeling mappings. The first is the Gray mapping where the points have con-
secutive labels � 00 � 01 � 11 � 10 � , the second is the mapping with consecutive labels� 00 � 01 � 10 � 11 � . Assume that the channel is Gaussian with variance � 2  1

2 . For
both maps find the maximum achievable rate under multilevel coding and under
bit-interleaved coded modulation (BICM). Which map is perferrable for BICM.

4.4. Consider the complex baseband equivalent OFDM signal s � t 
  ∑N � 1
i � 0 si � t 
 ,

t
� � 0 � T 
 , in one symbol interval as discussed in class. What is the corresponding

passband signal? Next assume that we have coherent detection. This means that
at the receiver we can separate the inphase and the quadrature components of
the signal. Argue now that we could have chosen the spacing of the frequencies
twice as dense, namely we could have chosen f0  1

2T and still maintained the
orthogonality relationship between the signals.

4.5. In this exercise we will learn some simple facts about binary Golay se-
quences. Consider two binary sequences x and y of length N, more precisely
x � y ��� �

1 � N. We say that x and y are complementary, which we denote by x � y
if

∑
k

� xkxk � i � ykyk � i 
� 2N
�

i � i
��� � (4.6)
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where we assume here that x and y are non-zero for k  0 � ����� � N 	 1, and are zero
outside this region.

Example 14. The simplest exmaple of a complementary pair is � � � � 	 . Ex-
amples of complementary pairs of length 4, 8, and 10 are � � � 	 � � � 	 � ,
� � � 	 � � 	 � � � � � 	 	 	 � 	 , and 	 � � 	 � 	 	 	 	 	 � � 	 � 	 	 	
� � 	 	 .

For a given x
��� �

1 � , define let its discrete-time Fourier transform be denoted
by X � e2 � j f 
 ,

X � e2 � j f 
� ∑
k

xke2 � j f k

�
Use Parseval’s theorem to show that

max
f ��� 0 � 1 
 �X � e2 � j f 
 � 2 � N �

Next, translate the relationship in (4.6) into the frequency domain and show that
it reads

�X � e2 � j f 
 � � �Y � e2 � j f 
 �  2N � f
� � 0 � 1 
 �

Now argue that this shows that the PAPR for an N-tuple which is complementary
is at most 2. Finally, can you prove any of the following generation rules which
generate longer Golay pairs from shorter ones? In the following let x � y. Let 	 x
denote the sequence all of whose components are negated, and let x̂ denote the
”time-reversed” sequence.

� ˆ�
x � ˆ�

y

� a � b, where ai  ��	 1 
 ixi and bi  ��	 1 
 iyi� xy � x � 	 y 

� x0y0x1 ����� xN � 1yN � 1 � x0 � 	 y0 
 x1 ����� xN � 1 ��	 yN � 1 
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5

A GLIMPSE AT ITERATIVE CODING

1. INTRODUCTION

Information theory establishes the limits of communications–what is achievable
and what is not. Coding theory tries to devise low complexity schemes that ap-
proach these limits.

The general problem of point-to-point communications is to convey a source
reliably to a sink over a given channel as shown in Fig. 5.1. The source might

source channel sink

Figure 5.1: The basic point-to-point communications problem.

refer to a picture, a sound pattern or a piece of text. Important examples of chan-
nels which one encounters in everyday life are radio links, phone lines or fiber
optic cables. For these examples, information is transmitted from one point in
space to another. But there are also important examples for which information
is transmitted from one point in time to another. The most familiar examples are
probably magnetic storage systems and compact discs. The sink serves simply as
a reminder that we would like to reconstruct the transmitted information given the
channel output with high reliability.

2. SHANNON’S FRAMEWORK

In his seminal paper in 1948 Shannon showed that without loss of generality the
point-to-point problem can be broken down into two separate problems as shown

107
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in Fig. 5.2. First, represent the source as efficiently as possible given a desired
upper bound on the distortion . This process is called source coding . Shannon’s
source coding theorem asserts that for a given source there exists a minimum rate
R  R � d 
 which is necessary (and sufficient) to describe this source with distortion
not exceeding d. The plot of this required rate R as a function of the distortion d is
usually called the rate-distortion curve. In the second stage an appropriate amount
of redundancy is added to these source bits to protect them against the errors in
the channel. This process is called channel coding . Shannon’s channel coding
theorem asserts that there is a maximum rate at which information can be trans-
mitted reliably, i.e., with vanishing probability of error, over a given channel. This
maximum rate is called the capacity of the channel. At the receiver we first de-
code the received bits in order to determine the transmitted information. We then
use the decoded bits to reconstruct the source at the receiver. Shannon’s source-
channel separation theorem now asserts that the source can be reconstructed with
a distortion of at most d at the receiver as long as R � d 
 
 C, i.e., as long as the rate
required to represent the given source with the allowed distortion is smaller than
the capacity of the channel. Further, no scheme can do better. In this section we

channel

source sink

source
encoder

channel
encoder

channel
decoder

source
decoder

Figure 5.2: The basic point-to-point communications problem.

will not be concerned with the source coding problem. We will assume that the
source emits a sequence of i.i.d. bits which are equally like zero or one. Under
this assumption we will see how to accomplish the channel coding problem in an
efficient manner for a variety of scenarios.

3. IMPORTANT CHANNEL MODELS

Let x be the input and y be the output of a given channel p � y � x 
 , where x and y
are both of length n. We will only be concerned with memoryless channels, i.e.,
channels for which p � y � x 
 :  ∏n

i � 1 p � yi � xi 
 . Further, we will only deal with binary-
input channels, i.e., channels with an input alphabet I of cardinality two. In all
our cases the input alphabet will either be � 0 � 1 � or � �

1 � . Let � and �̄ denote
the two possible inputs to a binary-input channel. We say that such a channel is
output-symmetric if p ��	 y � � 
  p � y � �̄ 
 . We note that the binary-input channels
which are most important in practice have this property.



3. IMPORTANT CHANNEL MODELS 109

In particular we will often use the following three binary-input output-symmetric
memoryless channels as examples. These are the binary erasure channel (BEC),
the binary symmetric channel (BSC), and the binary-input additive white Gaussian
noise channel (BIAWGNC). For completeness we review the basic facts concern-
ing these three channel.

Example 15. [BEC] Fig. 5.3 shows the binary erasure channel. Every transmitted
bit is either erased with probability � or otherwise transmitted correctly. The ran-
dom variables which determined whether bits are erased or not are independent.
The capacity of this channel is CBEC  1 	 � bits per channel use. The BEC can be
used as a naive first model to model packet losses due either to buffer overflows
or to excessive delays in a packet network (if we assume that packet losses are
independent of each other). The fact that any bit which is not erased is known to
be correct generally facilitates the analysis of any coding system for the BEC con-
siderably and coding for this channel is far better understood than for any other
non-trivial channel.

1 ���

1 ���

�
X� �

1

0 0

1

Y�e

Figure 5.3: The binary erasure channel (BEC) with erasure probability � .

Example 16. [BSC] Fig. 5.4 shows the binary symmetric channel. Every trans-
mitted bit is either flipped with probability � or otherwise transmitted correctly.
The random variables which determined whether bits are flipped or not are inde-
pendent. The capacity of this channel is CBSC  1 	 h � � 
 bits per channel use. The
BSC is the generic model for any memoryless channel in which hard decisions are
performed at the front end of the receiver.

1 ���

1 ���

X�

1

0 0

1

Y�
�

�

Figure 5.4: The binary symmetric channel (BSC) with cross-over probability � .

Example 17. [BIAWGNC] Fig. 5.5 shows the binary-input additive white Gaus-
sian noise channel. The input alphabet of the channel is � �

1 � . Denote the channel
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input at time
�

by X� , X� � � �
1 � , and the channel output by Y� , Y� � � . For the

BIAWGNC we have Y�  X� � Z � , where Z � is a normal random variable with
zero mean and variance � 2, and where the sequence of random variables � Z � ��� is
independent. The capacity of this channel is

CBIAWGNC :  	
� ∞

� ∞

� � x 
 log2
� � x 
 dx 	 1

2
log2 2 � e � 2 bits per channel use,

where
� � x 
� 1� 8 � � 2

�
e �

� x ! 1 � 2

2 " 2 � e �
� x �

1 � 2

2 " 2 � . Note that the capacity is a function of

Z �����	� 1 
�� N � 0 � 2 �

X�����	� 1 
 Y�����

Figure 5.5: The binary-input additive white Gaussian noise channel with noise
variance � 2.

1 � � 2 alone. More generally, if we allow a scaling of the inputs then the capacity is
a function of EN� 2 , where EN is the energy expanded per channel use (dimension).
A plot of CBIAWGNC as a function of EN � � 2 is shown in Fig. 5.6. Also shown is

1 2 3 4

0.2

0.4

0.6

0.8

1

Figure 5.6: Capacity of the BIAWGNC (solid line) and the AWGNC (dashed line)
as a function of EN� 2 .

the capacity of the regular additive white Gaussian noise channel (AWGNC) with
real-valued inputs which is equal to CAWGNC :  1

2 log2 � 1 � EN� 2 
 bits per channel use.
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Clearly, for small rates (small values of EN � � 2) we pay only a small penalty for
restricting the input to be binary. In order to assess the performance of a code over
the BIAWGN channel it is natural to plot the bit error probability Pb as a function
of EN� 2 . For small rates r it is even more useful to plot the bit error probability as a

function of Eb
N0

, where Eb  1
r EN is the energy expanded per bit and N0  2 � 2 is

the one-sided power spectral density so that Eb
N0
 1

2r
EN� 2 . Why is it convenient to

use Eb
N0

for small rates?

In this case a quick calculation shows that CBIAWGNC � CAWGNC �
EN
2 � 2 bits per

channel use (just use the Taylor series expansion on the expression for CAWGNC).
Assume we transmit at rate r  � CAWGNC, i.e., we achieve a fraction � of capacity.
In this case we see from the approximation that we have Eb

N0
 1

�
, a constant! In

other words, for low rates measuring the performance with respect to Eb
N0

allows
us to compare codes of different rates on an (almost) equal footing.

Let C denote the Shannon capacity of a given channel. Then any rate below
C can be achieved with vanishing probability of error and vice-versa to achieve
a vanishing probability of error we have to transmit below C. What if we allow
a non-vanishing probability of error, lets say p? What is then the maximal rate
at which we can transmit? Call this rate C

	 p 
 . In this case we can proceed as
follows: First compress the information such that the original bits can be recon-
structed from the compressed version with a Hamming distortion of (at most) p.
From elementary rate-distortion theory we know that this requires a source code
of rate 1 	 h � p 
 . These compressed bits can now be transmitted over the channel
at vanishing probability of error, so that the condition for successful transmis-
sion reads r � 1 	 h � p 
�
 
 C. Further, by the source-channel separation theorem for
point-to-point channels this is the best we can do. It follows that C

	 p 
  C
1 � h 	 p 
 .

To be concrete, consider a channel parametrized by a single real valued parameter
x and with capacity C � x 
 so that C � x 
 is a strictly increasing function in x (e.g.
the BIAWGNC parametrized by Eb � N0). From our remarks above we see that
in order to transmit over this channel at rate r with a bit error probability of at
most Pb requires that r 
 C 	 x 


1 � h 	 Pb 
 or reversely that x � C � 1 � r � 1 	 h � p 
�
 . This is

demonstrated for r  1
2 in the case of the BIAWGNC in Fig. 5.7.

At first it might seem that these three channel models hardly begin to scratch
the surface of the rich class of channels that one might encounter in practice and
that, therefore, our focus on these three models might limit the applicability of our
results to a very narrow range of applications. Fortunately, the situation is not quite
as drastic. First, these three models appear unusually often in practice. Second, it
is at least in theory possible to build up more complex models by using these three
channel models as building blocks. E.g., once the BIAWGNC is mastered the
general AWGNC could simply be handled by stacking-up properly scaled codes
for the BIAWGNC. Third, the extension of many of the methods and theorems
which we will discuss to more general scenarios is often quite straightforward and
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Figure 5.7: The achievable region for non-vanishing Pb and the BIAWGNC.

so for the sake of notational simplicity we will not discuss them in detail.

4. CODING: (TWO) TRIAL(S, THEIR RATE) AND (THEIR ASSO-
CIATED) ERROR

How can we transmit information reliably over a noisy channel at a positive rate?
Consider the following two ad-hoc schemes for transmission of information over
the BSC with cross-over probability � , where without loss of generality we can
assume � � 1

2 .

First consider uncoded transmission, i.e., we simply send the information
across the channel without the insertion of redundant bits. Let x, x

� � 0 � 1 � , denote
the desired bit which we would like to convey to the receiver and let y denote the
received bit. The MAP estimator chooses x̂ :  argmaxx � � 0 � 1 � P � x � y 
 . Since the bits
are equally likely and since � � 1 � 2 this estimate is equal to x̂  y and therefore
the bit error probability is equal to Pb  P � x̂ � x �  � . We can therefore achieve
with this transmission strategy a � rate � Pb 
 -pair of � 1 � � 
 .

If this error probability is too high, what transmission strategy can we use
to lower the error probability? The simplest such strategy is repetition-coding.
Assume we repeat each bit k times, where for simplicity we will assume that k is
odd. So if we want to transmit bit x then the input to the BSC is x ����� x� � 	 �

k �

. Denote
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the k received bits by y1 ����� yk. It is easy to check that the MAP decoding rule is
x̂  majority of � y1 ������� � yk � . Hence the probability of bit error is given by

Pb  P � x̂ � x �  P ��� k
2

�
errors occur �  ∑

i � k � 2

�
k
i � � i � 1 	 � 
 k � 1

�

So with repetition codes one can achieve the pairs � 1
k � ∑i � k � 2 
 ki � � i � 1 	 � 
 k � 1 
 .

Clearly, in order to have Pb approach zero one has to choose k larger and larger
and as a consequence the rate will approach zero as well!

Can we keep the rate positive while letting the bit error probability go to zero?

There are quite a few different types of coding schemes available. In your
first communications class you have encountered convolutional codes and in the
information theory class you learned about block codes, in particular Hamming
codes and Reed-Solomon codes. These are the classical codes which are used
extensively (and almost exclusively) in applications. As a rule of thumb, for rea-
sonable complexities and bit error probabilities of roughly 10 � 5, convolutional
codes allow the transmission of information over Gaussian channels at roughly
twice the energy per transmitted symbol as compared to Shannon’s bound. (In
engineering jargon we say that such codes are roughly 3dB away from capacity.)
We will now investigate a completely different approach to coding based on (sub-
optimal) iterative decoders. This approach was originally invented by Gallager in
the early 60ties. Since at that time the necessary technology to implement these
techniques was note available, iterative coding schemes were completely forgot-
ten until the early nineties, when they were rediscovered. It is now known, that
for large enough block lengths iterative coding techniques allow transmission of
information very close to capacity at extremely low complexities.

In this section we will focus almost exclusively on the simplest channel, the
BEC, since for this case the analysis is particularly simple. But the principle of
iterative decoding is readily extended to general channels and the best (practical
implementable) codes known to date are all based on iterative decoding schemes.

In principle iterative decoding can be applied to any given code. But, unless
the code is constructed in a proper way, the resulting performance will be very
poor. E.g. Reed-Solomon are not suitable for iterative decoding. Of the many
classes of codes which have been designed for iterative decoding (turbo-codes,
repeat-accumulate codes, tree codes, low-density parity-check codes, ...) we will
focus on low-density parity-check codes. These are the codes originally invented
by Gallager.
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5. LOW-DENSITY PARITY-CHECK CODES

A binary linear code C of length n and dimension k can be described in terms of
its � n 	 k 
 � n parity-check matrix H,

C � H 
 :  �
x
� GF � 2 
 n : HxT  0T � �

In a nutshell, low-density parity-check (LDPC) codes are linear codes which
have sparse parity-check matrices (hence also the name low-density).

Given a binary linear code we would like to associate to it a graphical rep-
resentation. For this purpose we will use the following simple bipartite graph:
the variable or left nodes corresponds to components of the codeword and the
check or right nodes correspond to the set of parity-check constraints satisfied by
codewords of the code.

Example 18. Assume we are given a code C � H 
 of length n  10 and dimension
k  5, where

H :  ������
1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1

������� �

The bipartite graph representing C � H 
 is shown in Fig. 5.8. Note that each check
node represents one linear constraint (one row of H). For the particular example
we start with ten degrees of freedom (ten variable nodes). The five linear con-
straints reduce the number of degrees of freedom by at most five (and exactly by
five if all these linear constraints are linearly independent as is true for this specific
example). Therefore at least five degrees of freedom remain. It follows that the
shown code has rate (at least) one-half.

Note that in the above example every variable node has degree three and every
check node has degree six – in other words every component participates in three
checks and every check involves six components. We call such a code a � 3 � 6 
 -
regular low-density parity-check code. Why low-density? Note that the number
of one entries in the parity check matrix is exactly 3n, where n is the length of the
code. In particular, if we think of � 3 � 6 
 -regular codes of increasing lengths then
the number of one entries in the parity check matrix only grows linearly with the
length. This is in contrast to lets say a random linear code, where each entry in
the parity check matrix is chosen i.i.d. to be one with probability one-half, so that
the number of one entries in such a parity check matrix grows like the square of
the code length.

More generally, a � dl � dr 
 -regular LDPC code is a binary linear code such
that every component participates in exactly dl checks and such that every check
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Figure 5.8: A � 3 � 6 
 -regular code of length 10 and rate at least one-half. There
are 10 variable nodes and 5 check nodes. For each check node � i the sum (over
GF(2)) of all adjacent variable nodes is equal to zero.

involves exactly dr components. Note that the rate of such a code is equal to
r :  1 	 dl

dr
. This can be seen since on the one hand there are ndl edges emanating

from all variable nodes. On the other hand, assuming that there are m check nodes,
then this number of edges is also equal to mdr. Equating these two expressions
we get m  n dl

dr
, from which the rate expressions follows.

6. ITERATIVE DECODING OF LDPC CODES FOR THE BINARY

ERASURE CHANNEL

We will restrict our discussion to the simplest channel, namely the binary erasure
channel (BEC). For this channel iterative decoding is particularly simple. Con-
sider the code with a graphical representation as given in Fig. 5.9. In the left pic-
ture a particular codeword is marked. All edges emanating from variables nodes
which are one are drawn solid whereas those which emanate from variable nodes
which are zero are drawn dashed. It is easy to verify that this indeed constitutes
a valid codeword by checking that every check node has an even number of solid
edges emanating from it. On the right the same codeword is shown after it is
passed through a BEC. Seven of the bits have been erased and they are marked by
“?”.

The workings of the iterative decoding procedure which we consider are
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Figure 5.9: A � 3 � 6 
 -regular LDPC code of length 20. In the left figure a particular
codeword is shown. All edges emanating from variables nodes which are one are
drawn solid whereas those which emanate from variable nodes which are zero are
drawn dashed. On the right the same codeword is shown after it is passed through
a BEC. Seven of the bits have been erased and they are marked by “?”.
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shown in Fig. 5.10. As a first step, each variable node which is not erased prop-
agates its known value along all its outgoing edges. This is shown in the left
column of the figure which is entitled � ����
�� 
 ����� ����� 
 . Edges which carry a zero
are drawn as thin lines whereas edges which carry a one are shown as thick lines.
Edges which emanate from erasures are drawn as dashed lines. At each check
node we sum (modulo two) all these incoming values and store this (partial) sum
in a memory cell which is associated to this check node. Further, we delete all
involved edges. The result is shown in the right column entitled �

����� 
�� 
 ��� � ����
 .
A black box indicates that the partial sum of this check node is currently one
whereas a white box indicates a partial sum of zero. Note that there are three
check nodes which have degree one. i.e., which received messages along all their
edges except one. Since the modulo two sum of all messages into a particular
check node is by definition of the code equal to zero, such a check node deter-
mines the value of the variable node it is connected to. Hence as a second step we
propagate the partial sum of any check node which has currently degree one to its
connected variable node. Again, a right-to-left message which is zero is indicated
as a thin line, a message which is one is indicated as thick line and edges which
do not carry any messages are drawn as dashed lines. The value of any variable
node which receives a message along one of its edges is set to the value of this
message and all involved edges are again deleted. The same procedure can now
be repeated, i.e., we send the value of known variables along any of their remain-
ing edges, accumulate partial sums at check nodes, delete all involved edges, send
messages back from degree one check nodes, set the value of any so far unknown
variable node which receives a message equal to the value of this message and
again delete all involved edges. We will call one such round an iteration of the
decoding algorithm.

If this procedure does not terminate prematurely then the value of all variable
nodes will be determined. As can be seen from Fig. 5.10, for our example, the
decoder recovers successfully from seven erasures after three iterations. But in
general the decoder might fail in several ways: It might happen that for some
iteration there is no check node of degree one so that no right-to-left message
can be sent or that the right-to-left messages do not determine any so far unknown
variable node so that no left-to-right message can be sent. In this case the decoding
will remain incomplete. It is also easy to see that this decoder is suboptimal, i.e.,
that it will sometimes fail when a ML decoder will succeed, see Exercise 5.2.

It is important to notice that each edge is used at most once. Since the number
of edges is proportional to (in our case three times) the number of variable nodes
it follows that the decoding complexity is linear in the length of the code.

For the analysis of this decoding algorithm we will now reformulate the pre-
ceding algorithm as a message passing algorithm, i.e., an algorithm in which mes-
sages are passed along the edges of the graph.

Given a variable node � (a check node � ) let E ��� 
 (E � ��
 ) be the set of its
edges. Messages are from the set � 0 � 1 � ? � with a “?” indicating an erasure, i.e.,
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Figure 5.10: Iterative decoding for the erasure channel. After three iterations the
decoder successfully recovers from seven erasures.
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indicating that the corresponding bit has not been determined yet (along the given
edge). At a variable node � the outgoing message along an edge � , �

� E ��� 
 , is the
erasure message if the received message associated to this node is an erasure and if
incoming messages along all edges in E ��� 
  � � � are erasure messages, otherwise
the outgoing message is equal to the value of this variable node. At a check node
� the outgoing message along an edge � , �

� E � ��
 , is the erasure message if at
least one of the incoming messages along all edges in E � ��
  � � � is the erasure
message, and it is the ��� � of the incoming messages along all edges in E � ��
  � � �
otherwise. We say that a variable node is known if either its received value is
known or if it has at least one incoming message which is not an erasure.

We claim that both description represent the same algorithm, i.e., that the set
of known variable nodes at any iteration of the algorithm is the same. Let us apply
this message passing algorithm to our example. This is shown in Fig. 5.11. We
start with the left-to-right messages, conveying the values of the variable nodes to
the check nodes. This is shown in the � ����
���
 ��� � ����� 
 column. In accordance
with the previous example, zero messages are indicated as thin lines, one mes-
sages are shown as thick lines and erasure messages are indicated as dashed gray
lines. The right-to-left messages are now determined from the previous left-to-
right messages according to our rule. Messages are passed for several iterations
until, hopefully, all variable nodes have been determined. By comparing Fig. 5.9
and Fig. 5.11 it is easy to check that at any iteration the set of known variables is
the same for this example for both decoders. The proof of the claim that this is
true in general is left as Exercise 5.3.

7. IRREGULAR LOW-DENSITY PARITY CHECK CODES

So far we have seen regular LDPC ensembles, i.e., LDPC codes all of whose vari-
able (check) nodes have the same degree dl (dr). In order to achieve better perfor-
mance it is necessary to regard irregular LDPC ensembles, we need to consider
ensembles of codes whose nodes have various degrees. Therefore we define an
irregular LDPC code as a LDPC code for which the degrees of each set of nodes
are chosen according to some distribution. E.g., an irregular LDPC code might
have a graphical representation in which half the variable nodes have degree 3 and
half have degree 4, while half the constraint nodes have degree 6 and half have
degree 8. Although the specification of the node degrees could be done in various
ways the following notation leads to particularly elegant statements of many of
the most fundamental results. In general, we call � � x 
 a degree sequence if � � x 
 is
a real valued polynomial with non-negative coefficients and � � 1 
� 1. Let dl and
dr denote the maximum variable node and check node degrees, respectively, and
let ��� x 
 :  ∑dl

i � 1 � ixi � 1 and � � x 
 :  ∑dr
i � 1 � ixi � 1 be two degree sequences. More

precisely, let the coefficients, � i ( � i) represent the fraction of edges emanating
from variable (check) nodes of degree i. Then clearly this degree sequence pair
� ��� � 
 completely specifies the distribution of the node degrees. The alert reader
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Figure 5.11: Message passing decoding for the erasure channel. After three itera-
tions the decoder successfully recovers from seven erasures.
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may have noticed several curious points about this notation. First, we do not
specify the fraction of nodes of various degrees but rather the fraction of edges
that emanate from nodes of various degrees. Clearly, it is easy to convert back
and forth between this edge perspective and a node perspective. E.g., assume
that half the variable nodes have degree three and half have degree four and that
there is a total of n nodes. Since every degree three node has three edges emanat-
ing from it, whereas every degree four nodes has four edges emanating to it we
see that there are in total 1 � 2 � 3n edges which emanate from degree three nodes
and that there are in total 1 � 2 � 4n edges which emanate from degree four nodes.

Therefore � 3  1 � 2 � 3
1 � 2 � 3 � 1 � 2 � 4  3 � 7 and � 4  1 � 2 � 4

1 � 2 � 3 � 1 � 2 � 4  4 � 7 so that in this case

��� x 
  3 � 7x2 � 4 � 7x3. Second, the fraction of edges which emanate from a de-
gree i node is the coefficient of xi � 1 rather than xi as one might expect at first. The
ultimate justification for this choice comes from the fact that, as we will see later,
simple quantities like � � � 0 
 or � � � 1 
 take on an operational meaning.

8. ANALYSIS OF DECODING ALGORITHM

Let x0 denote the erasure probability of the channel and let x � denote the probabil-
ity that a randomly chosen edge carries a left-to-right erasure message in the

�
-th

iteration. Given x � � 1 we would like to determine x � . Consider first a check node
of degree d and the message emanating from this check node along a particular
edge. This message will be an erasure message iff at least one incoming mes-
sage along the other edges is an erasure message. This happens with probability
1 	 � 1 	 x � � 1 
 d � 1. The probability that a randomly chosen edge is connected to a
check node of degree d is given by � d . Therefore the probability that a randomly
chosen edge carries a right-to-left erasure message in the

�
-th iteration is given by

1 	 � � 1 	 x � � 1 
 .1 To complete one iteration cycle consider now a variable node
of degree d and a message which is emitted from it in the

�
-th round along a par-

ticular edge. This message will be an erasure message if the incoming messages
along all other edges as well as the received message are erasure messages. This
happens with probability x0 � 1 	 � � 1 	 x � � 1 
�
 d � 1. Averaging over all variable node
degrees we see that the probability of a right-to-left erasure message in the

�
-th

iteration along a randomly chosen edge is given by [?]

x �� x0 ��� 1 	 � � 1 	 x � � 1 
�
 � (5.1)

We will assume that we are only interested in coding systems for which the re-
maining erasure probability converges to zero (as the length of the codes tends to
infinity). Therefore, for a fixed degree sequence pair � ��� � 
 we will be interested
in how large we can choose the initial erasure probability x0, i.e., how bad the
channel can be, such that the expected fraction of erasures x � still converges to
zero if we allow more and more iterations.

1Now we finally see the reason for specifying the various node degrees in this manner!
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Note that for x � y � � 0 � 1 � , the function f � x � y 
 :  y ��� 1 	 � � 1 	 x 
�
 is an in-
creasing function in both of its variables. Assume that for some fixed � � � 0 � 1 � ,
x � � � 
 � � ∞� 0. By finite induction we then see that for any � � � � 0 � � � , x � � � � 
 � � ∞� 0.
This is true since by assumption x0 � � � 
  � � � �  x0 � � 
 , anchoring the finite in-
duction, and since

x � � � � 
� f � x � � 1 � � � 
 � � � 
 � f � x � � 1 � � � 
 � � 
 � f � x � � 1 � � 
 � � 
� x � � � 
 �

where in the one before last step we have used the induction hypothesis that
x � � 1 � � � 
 � x � � 1 � � 
 . Therefore it is meaningful to define the value x

�
0 as the supre-

mum of all values of x0 such that x � converges to zero when
�

tends to infin-
ity. There are many other equivalent characterizations of x

�
0. A nice graphical

characterization of x
�
0 is given as follows. Note that in order for x � � � 
 to con-

verge to zero we need that x � is strictly decreasing, i.e., x � 	 x � � 1  x0 ��� 1 	
� � 1 	 x � � 1 
�
 	 x � � 1


 0. We can therefore look for the supremum of all x0 such
that x0 ��� 1 	 � � 1 	 x 
�
 	 x is strictly negative for 0 � x � x0. This is shown
graphically in Fig. 5.12 for the ensemble of � 3 � 6 
 -regular codes and the values
x0  0 � 4 � 0 � 42944 � 0 � 45. We see that the supremum of all x0 such that this plot is
strictly negative over the whole range of interest is taken on around 0 � 42944. Note
that for x0 � 0 � 42944 there is one critical value for which the expected decrease
in the erasure fraction is zero.
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Figure 5.12: Plots of the function x0 ��� 1 	 � � 1 	 x 
�
�	 x for x0  0 � 4 � 0 � 42944 � 0 � 45.
We see that the supremum of all x0 such that this plot is strictly negative over the
whole range of interest is taken on around 0 � 42944.
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8.1 ANALYTIC DETERMINATION OF THE THRESHOLD

Although one could use the above graphical method to determine the threshold
to any degree of accuracy it is nevertheless pleasing (and not too hard) to derive
analytic expressions for these thresholds. Solving equation (??) for x0 we get

x0 � x 
� x

��� 1 	 � � 1 	 x 
�
 � (5.2)

In words, for a given positive real number x there is a unique value of x0 such
that x fulfils the fixed point equation (??). By the remarks above, if x � x0 then
the threshold is upper bounded by x0. This fact is used in the following lemma to
determine the threshold of regular codes for the BEC.

Lemma 9. [Thresholds for the BEC and Regular Codes] Assume we are given a
� dl � dr 
 -regular LDPC code. Let � be the unique positive real root of the polyno-
mial p � x 
� ��� dl 	 1 
 � dr 	 1 
 	 1 
 xdr � 2 	 ∑dr � 3

i � 0 xi. Then the threshold x
�
0 � dl � dr 
 is

equal to x
�
0 � dl � dr 
� 1 � �	 1 � � dr ! 1 
 dl ! 1 .

Proof. By the remarks above, the threshold is given by min � g � x 
 : g � x 
 �
x � , where g � x 
 :  x

� 	 1 � � 	 1 � x 
 
  x	 1 � 	 1 � x 
 dr ! 1 
 dl ! 1 . First note that g � x 
 � x with

equality only at x  1. It follows that the threshold is given by the minimum of
g � x 
 over the range x

� � 0 � 1 � . In the sequel it will be slightly more convenient to
consider g � 1 	 x 
  1 � x	 1 � xdr ! 1 
 dl ! 1 . Taking the derivative of g � 1 	 x 
 with respect to

x and setting the result to zero we get the polynomial equation

��� dr 	 1 
 � dl 	 1 
 	 1 
 xdr � 1 	 � dr 	 1 
 � dl 	 1 
 xdr � 2 � 1  0 �
By Descartes’ rule of signs2 this equation has at most two positive real roots.
Clearly, one such root is at x  1. Hence, dividing by x 	 1 we get the simplified
polynomial equation

��� dl 	 1 
 � dr 	 1 
 	 1 
 xdr � 2 	
dr � 3

∑
i � 0

xi  0 �

which by the above remark has at most a single l positive root. It is easy to see
that g � x 
 has a pole at x  0 and is equal to 1 at x  1. Hence, g � x 
 does not take
on its minimum at the boundary. It follows that it must take on its minimum in
the interior, hence, at least one and therefore exactly one solution to the above
polynomial equation must exist.

2Descartes’ rule of signs bounds the number of positive real roots of a polynomial f � x � in one
variable. If

f � x � � r

∑
j � 1

c jx
m j


with 0 � m1 � m2 �
   � mr and with all coefficients c j �� 0, then the number of positive real zeros of
f is upper bounded by the number of sign changes N

� � f � between consecutive coefficients c j when
taken in order of increasing j, see [?], [?, Chapter 6].
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In the following examples the threshold for some standard regular codes are
determined.

Example 19. [ � 3 � 6 
 code] Let � be given by

�  1
36 �

�
25
324 	 a � b

2 �

�
25

162 � a 	 b � 685

2916
�

25
324 � a � b

2
�

where a  22
27 5

2
3

�
2

� 85 � 3 � 24465
� 1

3
and b  1

27

�
5
2

�
	 85 � 3 � 24465� � 1

3
. Then

x
�
0 � 3 � 6 
 :  1 � �	 1 � � 5 
 2 � 0 � 42944.

Example 20. [ � 3 � 5 
 code] x
�
0 � 3 � 5 
  1 � ! 1 ! 	 694 ! 42 � 267 
 1

3 ! 	 694
�

42 � 267 
 1
3

21����� 1 �

�
1

� 	 694 ! 42 � 267 
 1
3 � 	 694

�
42 � 267 
 1

3 � 4

194481

�����	
2 � 0 � 540605.

Example 21. [ � 4 � 6 
 code] Let � be given by

�  1
56 �

1
2

�
115
2352

	 a � b � 1
2

�
115

1176 � a 	 b � 1625

10976 115
2352 	 a � b

�

where a  1752 
 3
21 	 � 65 � 3 � 22305 
 1 
 3 and b  1

42 � 5 � 	 65 � 3 � 22305 
�
 1 � 3. Then x
�
0 � 4 � 6 
 : 

1 � �	 1 � � 5 
 3 � 0 � 506741.

Example 22. [ � 3 � 4 
 code] x
�
0 � 3 � 4 
� 3125

3672 � 252 � 21 � 0 � 647426.

8.2 THE STABILITY CONDITION

Consider again the recursion x �  x0 ��� 1 	 � � 1 	 x � � 1 
�
 which describes the evo-
lution of the expected fraction of erasure messages on an infinite tree. Although
in the previous section we saw that, at least for regular codes, it is quite easy to
give an analytic expression for the threshold x

�
0 of such codes it is nevertheless

instructive to derive the following upper bound on x
�
0. This upper bound is derived

by looking at the behavior of the above recursion for small values of x � . We will
see later that the same principle can be used to derive upper bounds on the thresh-
old for general memoryless channels in which case there is currently no known
method for their analytic determination.

Let h � x 
 :  x0 ��� 1 	 � � 1 	 x 
�
 . Expanding h � x 
 in powers of x we see that
h � x 
  x0 � � � 0 
 � � � 1 
 x � O � x2 
 . Therefore, to first order in x, the fraction of erasure
messages will evolve from x to x0 � � � 0 
 � � � 1 
 x. Clearly, if we want the fraction of
erasure messages to tend to zero then we need � � � 0 
 � � � 1 
 
 1 � x0. From this we
can deduce the bound x

�
0

 1

��� 	 0 
 � � 	 1 
 . Vice versa, if � � � 0 
 � � � 1 
 
 1 � x0 then there
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exists an x � 0 such that the values of the recursion tend to zero if the recursion is
initialized with a value which does not exceed x. The condition � � � 0 
 � � � 1 
 
 1 � x0,
first discussed in [1], can be seen as a stability condition of the fixed point at x  0 �

9. GENERAL CHANNELS

The basic principle of iterative decoding is the same for general types of channels.
The only change required is to adapt the message alphabet and the variable node
and check node maps. By choosing these parameters appropriately one can ex-
plore a large section of the complexity versus performance plane. Fig. 5.13 shows
the achievable performance for the BIAWGNC.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
10-6

10-5

10-4

10-3

10-2

Eb/N0 [dB]

Eb/N0

0.159 0.153 0.147 0.142 0.136 0.131 0.125 0.12 Pb

1.0 0.977 0.955 0.933 0.912 0.891 0.871 0.851 σ

S
hannon Lim

it

T
hreshold

T
hreshold

irregular LD
P

C
C

T
urbo C

ode
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P

C
C

Figure 5.13: Comparison of an � 3 � 6 
 -regular LDPC code, turbo code, and op-
timized irregular LDPC code. All codes are of length 106 and of rate one-half.
The bit error rate for the BIAWGNC is shown as a function of Eb � N0 (in dB), the
standard deviation � , as well as the raw input bit error probability Pb.
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EXERCISES

5.1. In this example we will explore some of the basic properties of binary linear
block codes.

1. Convince yourself that GF � 2 
 n is a vector space.

2. A binary linear block code is a subspace of GF � 2 
 n for some n and therefore
has a dimension k, 0 � k � n. We can therefore represent such a code C as

C :  �
x
� GF � 2 
 n : x  uG;u

� GF � 2 
 k � �
where G � GF � 2 
 k � n is called the generator matrix. Define the set of words
C � as

C � :  � y � GF � 2 
 n : GyT  0T � �
Show the following:

(a) C � is a linear subspace of GF � 2 
 n.

(b) The dimension of C � is n 	 k.

(c) From the above two observations conclude that C � has a representa-
tion of the form

C � :  � x � GF � 2 
 n : x  uH;u � GF � 2 
 n � k � �
(d) Show that x

� C if and only if HxT  0T . H is called the parity check
matrix.

3. As we have seen in class, the generator matrix for the n-repetition code is
equal to

G  � 1 � ����� � 1� � 	 �
n �


 �
What is the corresponding parity check matrix?

4. As a second example, consider the so-called single-parity check code of
length n which has a generator matrix equal to

G  �����
1 0 0 ����� 0 0 1
0 1 0 ����� 0 0 1
... ����� ����� ����� ����� ����� 1
0 0 0 ����� 0 1 1

������
What is it’s associated parity-check matrix? Any comments?

5. The code is said to be in systematic form if the first k � k submatrix of G
is the diagonal identity matrix. Assuming that G is in systematic form, can
you easily find a corresponding H?
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5.2. Show that the message passing decoder for the BEC is suboptimal by finding
a simple graph and a particular codeword such that the ML decoder will succeed
but such that the iterative algorithm will fail. What is the smallest example you
can find?

5.3. Show that the two iterative decoders for the BEC are indeed equivalent, i.e.,
that for any iteration the set of known variable nodes is the same.
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6

SOLUTIONS OF THE EXERCISES - 1

Exercise 1.1
Recall that the random variables Z1 ������� � Zn are jointly Gaussian when they
form a (jointly) Gaussian random vector � Z1 ������� � Zn 
 . Here, the covariance
matrix of the zero-mean Gaussian random vector � Z1 ��������� Zn 
 is � 2In (the
matrix In denoting the n � n identity matrix). Consider P the (constant)
matrix representing the transformation of the canonical basis into the or-
thonormal basis � �

1 ������� � �
n 
 . Both basis are orthonormal, therefore P is

orthogonal, i.e., PPT  In. Since W  PZ, the linear mapping induces that,
like Z, W is a zero-mean Gaussian random vector. Moreover, it has covari-
ance � W TW  � � PZ 
 T � PZ 
  � ZT PT Z  � ZT Z  � 2In. Therefore, W has
same distribution as Z.

Exercise 4.2
In the Gaussian case with uniform priors, the decision regions are the
Voronoi regions:
Consider m points ai

��� n with uniform priors pi  1
m . Under hypothesis i,

the observation Y is Y  ai � Z, where Z  � Z1 ��������� Zn 
 is a jointly Gaus-
sian vector of independent zero mean random variables each of variance � 2.
With

fY �H � y � i 
� 1

� 2 ��� 2 
 n � 2 e �
 
y ! ai
 2

2 " 2 �
the MAP decision rule is

Ĥ � y 
  argmaxi

�
fY �H � y � i 
 pi �

 argmaxi

�
	

�
y 	 ai

� 2

2 � 2 � ln � pi 
 �
 argmini

� � y 	 ai
� 2

2 � 2 	 ln � 1
m

��

 argmini
�
y 	 ai

� � (6.1)

129
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so that the decision regions are equal to the Voronoi regions.

Convexity of the decision regions in the Gaussian case:
An element x is in the Voronoi region associated to the hypothesis i iff,
for all j � i,

�
x 	 ai

� 2 � �
x 	 a j

� 2, or, iff, for all j � i, 
 x � a j 	 ai � ��
a j
� 2 � � ai

� 2
2 .

Consider x1 � x2 two elements of the Voronoi region associated to the hy-
pothesis i. Taking � � � 0 � 1 � , we can write,


 � x1 � � 1 	 � 
 x2 � a j 	 ai �  � 
 x1 � a j 	 ai � � � 1 	 � 
 
 x2 � a j 	 ai �� � �
a j

� 2 	 �
ai
� 2

2 � � 1 	 � 

�
a j

� 2 	 �
ai
� 2

2


�
a j

� 2 	 �
ai
� 2

2
� (6.2)

for all j � i. I.e., the point � x1 � � 1 	 � 
 x2 is in the Voronoi region associ-
ated to ai.

Exercise 1.3
(i) Exact probabilty or error for MAP
The 8 points of the modulation scheme are equivalent and we therefore have

Pr � error �  Pr � e �H  4 �  Pr � z � B �  2Pr � z � A � �
as shown in Fig. 6.1. Changing to polar coordinates as indicated in Fig. 6.2

a 0

a 1

a 2
a 3

a 4

a 5
a 6

a 7

A B

Regions :

Figure 6.1: Integration region for error probability

we get,
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a 4

z~(r,θ)

π−8

)b( θ

z~(r,θ)

)b( θr-

−8
3πθ

θ

a

1

1

Figure 6.2: Polar coordinates system for integration

Pr � z � A � 
� 7 �

8� � 0

� � ∞

r � b 	 � 
 1
2 ��� 2 exp � 	 r2

2 � 2 
 rd
�
dr� (6.3)

Computation of b � � 
 : From Fig. 6.2 we see that a  sin � �8 
 . Therefore,

b � � 
 cos � 3 �
8
	 � 
� sin � �

8

 	 b � � 
� sin � �8 


sin � � � �
8 
 �

Computation of Pr � z � A � :

Pr � z � A � 
� 7 �

8� � 0

� � ∞

r � b 	 � 
 1
2 ��� 2 exp � 	 r2

2 � 2 
 rd
�
dr


� 7 �

8� � 0

�
	 1

2 � exp � 	 r2

2 � 2 
�� � ∞

b 	 � 
 d �


� 7 �
8� � 0

1
2 � exp � 	 b � � 
 2

2 � 2 
 d �
�

Conclusion: The exact probability of error is given by

Pr � error �  2Pr � z � A �  1
�
� 7 �

8� � 0
exp

�
	 sin2 � �8 


2 � 2 sin2 � � � �
8 

� d

�
� (6.4)

(ii) Union bound on probabilty of error for MAP
Consider the situation depicted in Fig. 6.3. There are two intersecting re-
gions C (right to the axis y=-x) and D (right to the axis y=x). We have,
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a 4

C

D

Figure 6.3: Integration region for error probability using the union bound

Pr � error �  Pr � e �H  4 �
 Pr � z � C � D �� Pr � z � C � � Pr � z � D �
 Q � sin � �8 


� 
 � Q � sin � �8 

� 


 2Q � sin � �8 

� 
 �

Exercise 1.4
Formula for the MAP decision rule:
Denoting A the random variable for the transmitted points, the hypothesis
H  i, i

� � 0 � 1 � , leads to transmit A  ai0 or A  ai1 with equal probability.
Therefore, the MAP decision rule is

Ĥ � y 
 :  argmaxi pH �Y � i � y 

 argmaxi

�
pA �Y � ai0 � y 
 � pA �Y � ai1 � y 
 �

 argmaxi

�
fY �A � y � ai0 
 � fY �A � y � ai1 
 �

where the last equality occurs from the uniform priors for A. (For � k � l 
 �� 0 � 1 � 2, Pr � A  akl �  1 � 4 since the priors for H are 1 � 2 and the two corre-
sponding possible transmitted points are then equally likely.). More explic-
itly, one can write,

Ĥ � y 
  argmaxi � � 0 � 1 �
�
e �
 
y ! ai � 0  2

2 " 2 � e �
 
y ! ai � 1  2

2 " 2 �


�
0 if W � y 
 � 1 �
1 if W � y 
 
 1 �
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where W � y 
 indicates the quotient W � y 
 :  e
!
 
y ! a0 � 0  2

2 " 2 � e
!
 
y ! a0 � 1  2

2 " 2

e
!
 
y ! a1 � 0  2

2 " 2 � e
!
 
y ! a1 � 1  2

2 " 2

.

Geometric interpretation:
Consider the coordinates system � O � u � v 
 for the 2-dimensional plane con-
taining the received point y and the possible transmitted points � akl � 	 k � l 
 � � 0 � 1 � 2.
The coordinates couple for y is � yu � yv 
 . We have,

W � y 
  W � y 
� e �
 
y ! a0 � 0  2

2 " 2 � e �
 
y ! a0 � 1  2

2 " 2

e �
 
y ! a1 � 0  2

2 " 2 � e �
 
y ! a1 � 1  2

2 " 2


e �

y2
u

�
y2
v

�
2

2 " 2

�
e

yu
�

yv" 2 � e �
xu

�
yv" 2 �

e �
x2
u

�
y2
v

�
2

2 " 2

�
e
! xu

�
yv" 2 � e

xu ! yu" 2 �
 1 � e �

2yu" 2 e �
2yv" 2

e �
2yu" 2 � e �

2yv" 2 �

The W � y 
 is here recognized, for yu � 0 and yv � 0, as being on the form

W � y 
  1

tanh
�
atanh � e �

2yu" 2 
 � atanh � e �
2yv" 2 
 � � 1 �

Indeed, in that case, e �
2yu" 2 � 1 and e �

2yv" 2 leq1 can be viewed as values of
tangent hyperbolicus functions. More generally, depending on the sign of
yu and yv, the quotient W � y 
 can always be written as 1/tanh 
 atanh � a 
 �
atanh � b 
 � or as tanh 
 atanh � a 
 � atanh � b 
 � . Finally, it follows that,

Ĥ � y 
  argmaxi � � 0 � 1 �
�
e �
 
y ! ai � 0  2

2 " 2 � e �
 
y ! ai � 1  2

2 " 2 �


�
0 if (yu � 0 and yv � 0) or if (yu � 0 and yv � 0) �
1 if (yu � 0 and yv � 0) or if (yu � 0 and yv � 0) �

The decision regions are represented in Fig. 6.4.
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a01

a11

a10

a00

decision
region
H=0

decision
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H=1

−1

−1

1

1

Figure 6.4: Hypothesis testing for H.

Exercise 1.5
Let x � 0. Then

Q � x 
 
� ∞

x

1� 2 � e � z2
2 dz

 e � x2
2

� ∞

x

1� 2 � e �
� z2 ! x2 �

2 dz

z � x� e � x2
2

� ∞

x

1� 2 � e �
� z ! x � 2

2 dz

� e � x2
2

� ∞

� ∞

1� 2 � e �
� z ! x � 2

2 dz

 e � x2
2

�
The inequality can also be obtained by considering the function f � x 
 
e � x2

2 	 Q � x 
 . Note that f � 0 
  1
2 � 0. Further, since f � � x 
� e � x2

2 � 1� 2 � 	 x 

is negative for x � 0 it follows that f � x 
 is a nonincreasing for x � 0. The
claim now follows by observing that limx � ∞ f � x 
� 0 � .
Let x � 0. Then

xQ � x 
 
� ∞

x

x� 2 � e � z2
2 dz

z � x� � ∞

x

z� 2 � e � z2
2 dz

 1� 2 � e � x2
2

�

Exercise 1.6
The noise component Zk for k  1 � 2 is a Gaussian random variables since
Z � t 
 is a Gaussian random variable and �

k � t 
 is deterministic. Its mean
values is

E � Zk � 
� � ∞

� ∞
E � Z � t 
 �  0 �
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The covariances of the noise components are, for i � j � � 1 � 2 � ,

E � ZiZ j � 
� � ∞

� ∞

� � ∞

� ∞
E � Z � t 
 Z � t � 
 � � i � t 
 � j � t � 
 dtdt �

 N0

2

� � ∞

� ∞

� � ∞

� ∞

� � t 	 t � 
 � i � t 
 � j � t � 
 dtdt �

 N0

2

� � ∞

� ∞

�
i � t 
 � j � t 
 dt

 N0

2

�
i � j �

Therefore the distribution of the random vector � Z1 � Z2 
 is a zero-mean
Gaussian with covariance matrix N0

2 I2.

Exercise 1.7
The convolution operation is a linear operation performed on the input sig-
nal X � t 
 . Therefore the expected value of the integrale is the integrale of the
expected value.

Y(t) is a zero-mean process:
We have E � X � t 
 �  0, then

E �Y � t 
 �  E
� � ∞

� ∞
X � � 
 h � t 	 � 
 d � �


� ∞

� ∞
E � X � � 
 � h � t 	�� 
 d �

 0 �
Covariance function of Y(t):
In the expression

KY � t � u 
  E �Y � t 
 Y � u 
 �
 E

� � ∞

� ∞
X ��� 
 h � t 	�� 
 d � � ∞

� ∞
X � � � 
 h � u 	�� � 
 d � � �

 E
� � ∞

� ∞

� ∞

� ∞
X � � 
 h � t 	 � 
 X ��� � 
 h � u 	�� � 
 d � d � � �


� ∞

� ∞

� ∞

� ∞
E �X ��� 
 X ��� � 
 � h � t 	�� 
 h � u 	 � � 
 d � d � �


� ∞

� ∞

� ∞

� ∞
KX ��� � � � 
 h � t 	�� 
 h � u 	�� � 
 d � d � � �

which clearly depends on KX and h � t 
 .
Assume now the process is wide sense stationary, i.e., KX � t � u 
  KX � t 	 u 
 ,
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then, we make the change ˆ�  t 	 � and ˆ� �  u 	�� � , so that,

KY � t � u 
 
� ∞

� ∞

� ∞

� ∞
KX � t 	 ˆ� � u 	 ˆ� � 
 h � ˆ� 
 h � ˆ� � 
 d ˆ� d ˆ� �


� ∞

� ∞

� ∞

� ∞
KX � t 	 u � ˆ� � 	 ˆ� 
 h � ˆ� 
 h � ˆ� � 
 d ˆ� d ˆ� � �

The covariance KY � t � u 
 is a function only of t 	 u, i.e, we can only consider
the function KY � � 

Relation between power spectral density of X � t 
 and Y � t 
 :
We have

SY � f 
 
� ∞

� ∞
KY � � 
 e � j2 � f � d

�


� ∞

� ∞

� ∞

� ∞

� ∞

� ∞
KX � � � ˆ� � 	 ˆ� 
 h � ˆ� 
 h � ˆ� � 
 e � j2 � f � d ˆ� d ˆ� � d

�


� ∞

� ∞

� ∞

� ∞
h � ˆ� 
 h � ˆ� � 
 e � j2 � f ˆ� e � j2 � f ˆ�

� � ∞

� ∞
KX � � � 
 e � j2 � f �

�
d
�

� d ˆ� d ˆ� � �

using
�

�  � � ˆ� � 	 ˆ� , i.e,

SY � f 
  �H � f 
 � 2SX � f 
 �
The output signal is the product of the power density spectrum of the input
multiplied by the magnitude squared of the frequency response.

Exercise 1.8
We consider jointly wide-sense stationary processes with cross-correlation
function RXU ��� 
 . We have,

RXU � � 
  � � X � t 
 U � � t 	�� 
 �
 � � � X � � t 
 U � t 	 � 
�
 � �


�
� � X � � t 
 U � t 	�� 
 � � �


�
� �U � t 	�� 
 X � � t 
 � � �	 a 
 �
� �U � t̃ 
 X � � t̃ � � 
 � � �  R

�
UX � 	 � 
 �

using in (a) the stationarity of the joint process U � t̃ 
 X � � t̃ � � 
 .
Exercise 1.9
The process Y � t 
 has is a zero-mean Gaussian process since it is simply a
linear combination of the zero-mean Gaussian process Z � t 
 . Moreover, for
all t and � , we have,

� � Z � t 
 Z � t 	 � 
 �  � � e2 � f0t Z � t 
 e2 � f0 	 t � ��
 Z � t 	 � 
 �
 e2 � f0 	 2t � ��
 � � Z � t 
 Z � t 	�� 
 �  0 �
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since � � Z � t 
 Z � t 	�� 
 �  0. I.e., Y � t 
 is circularly symmetric.
Such a process is stationnary if and only it is wide-sense stationary. Since
� �Y � t 
 �  e2 � f0t � � Z � t 
 � and � �Y � t � � 
 �  e2 � f0 	 t � ��
 � � Z � t � � 
 �  e2 � f0 	 t � ��
 � � Z � t 
 � 
0 are independent of t, it is also stationary.

Exercise 1.10

(a) For SR1 (respectively SR2 , SR3) the average energy of the constellation

is denoted E
R1 � d 
 (respectively E

R2 � d 
 ,ER3 � d 
 ). It follows

E
R1 � d 
  2d2 �

E
R2 � d 
  1

16
� 4 � 2d2 
 � 8 � 10d2 
 � 4 � 18d2 
 �  10d2 �

E
R3 � d 
  1

32
� 16 � 10d2 
 � 8 � 25d2 
 � 8 � 34d2 
 �  20d2 �

assuming that all points are equally likely.

We investigate now how the number of signal points and the average energy
scale with R under the continuous approximation ” �

2d2 r
�
r represents the

number of grid points which have norm between r and r � � r
(b) Denote N � R 
 the number of grid points within radius R and E

R
cont � d 


the average energy of all grid points within radius R, assuming that
all points are equally likely. We get,

N � R 
 
� R

r � 0

�
2d2 rdr�

E
R
cont � d 
  1

N � R 

� R

r � 0
r2 � �

2d2 rdr 
� R4

8d2� R2

4d2

 R2

2 �

(c) With R1  2d, the continuous assumption gives E
R1
cont � d 
  E

R � 2d
cont � d 
 	 2d 
 2

2  2d2. With R2  � 20d, we get E
R2
cont � d 
  � 	 20d 
 2

2  10d2

which is a reasonable approximation for the exact discrete average
energy E

R2 � d 
 previously computed!

(d) To transmit one extra bit, we have to double the number of points, i.e.,
we have to take a new number of points equal to Nnew  2N � R 
 . The

relation N � r 
  pir2

4d2 gives the radius Rnew of the new constellation as

Rnew  � 2R, i.e., we have to scale the radius by � 2.

If d� 
 
 1, the high order terms in the expression of the error probability
are neglectible: we have Pr � error ��� 4Q � d� 
 .
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(e) To keep the error probability constant, d is set to be constant. There-
fore, we have to scale the radius by � 2 to transmit one extra point. The

average energy E
Rnew
cont � d 
 of the new constellation is then E

� 2R
cont � d 
 

2 R2

2  2E
R
cont � d 
 , i.e., it is scaled by 2.

Exercise 1.11 For H � z 
 for which the degree of F � z 
 is less than the degree
of G � z 
 , the (unique) partial fraction expansion can be written as,

H � z 
  F � z 

∏k � z 	 zk 
  ∑

k

� k

z 	 zk � (6.5)

for some coefficients � k that we have now to determine.
Take an indice k0 in the set of all the k’s, the evaluation of the rational z-
transform � z 	 zk0 
 H � z 
 in zk0 is denoted � z 	 zk0 
 H � z 
 � zk0

. We have,

H � z 
 � z 	 zk0 
  F � z 

∏k:k �� k0

� z 	 zk 
 �

such that

H � z 
 � z 	 zk0 
 � zk0
 F � zk0 


∏k:k �� k0
� zk0 	 zk 
 (6.6)

 F � zk0 

G � � zk0 


� (6.7)

since G � � z 
� ∑ j ∏k:k �� j � z 	 zk 
 .
Eq. 6.7 combined with the evaluation of Eq. 6.5 in zz0 leads to � k0 

F 	 zk0



G
� 	 zk 
 .

Therefore,

H � z 
� ∑
k

F � zk 

G � � zk 


1
z 	 zk

 ∑
k

F � zk 

G � � zk 


1
z

1
1 	 zk

z �

Since 1
z

1
1 � zk � z  ∑∞

j � 0 zk
jz � j � 1, it is easy to see that the time sequence

which possesses this z-transform H � z 
 is causual with coefficients,

hn � 1  ∑
k � 0

F � zk 

G � � zk 
 z

n
k �

Moreover, we can write 1
z

1
1 � zk � z  � 1

zk

1
1 � z � zk

 	 ∑∞
j � 0 zk � j � 1 z j to obtain

the corresponding anticausal time serie,

H � z 
� ∑
k

F � zk 

G � � zk 


1
1 	 zk

 ∑
j � 0

∑
k

	 � zk 
 � j � 1F � zk 

G � � zk 
 z j �

with coefficients,

h̃n  ∑
k � 0

	 F � zk 

G � � zk 
 z � n � 1

k �
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If the degree of F � z 
 is larger, or equal to the degree of G � z 
 , a polynomial
in z called P � z 
 (with degree � 0 or equal to 0, respectively) will appear in
the partial fraction expansion such that,

H � z 
� P � z 
 � ∑
k

� k

z 	 zk �

Exercise 1.12
1. (a) With,

�
xi � i � 0

� x � D 
 : 
∞

∑
i � 0

xiD
i �

�
xi � 1 � i � 0

� x
	 1 
 � D 
 : 

∞

∑
i � 0

xi � 1Di �

�
xi � 2 � i � 0

� x
	 2 
 � D 
� ∞

∑
i � 0

xi � 2Di �

we can write,

Dx
	 1 
 � D 
  x � D 
 	 x0 �

D2x
	 2 
 � D 
  x � D 
 	 x0 	 x1D �

1. (b) With x � � D 
 :  ∑∞
i � 1 ixiDi � 1, we have

�
ixi � i � 0

�
∞

∑
i � 0

ixiD
i  Dx � � D 
 �

2. We could call ’exponential’, the formal power sum,

eD :  x1 � D 
�
∞

∑
i � 0

Di

i!
�

and ’cosinus’, the formal power sum,

cos � D 
 :  x2 � D 
�
∞

∑
i � 0
� 	 1 
 i D2i

� 2i 
 ! �
Those formal power sums have formal derivatives,

� eD 
 �  x �1 � D 
�
∞

∑
i � 1

i
Di � 1

i!


∞

∑
j � 0

D j

j!
 x1 � D 
� eD �

and,

cos � � D 
  x �2 � D 
 
∞

∑
i � 1
� 	 1 
 i � 2i 
 D

2i � 1

� 2i 
 !  	
∞

∑
i � 1
��	 1 
 i � 1 D2i � 1

� 2i 	 1 
 !  : 	 sin � D 
 �
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defining the formal power sum ’sinus’ being sin � D 
� ∑∞
i � 1 � 	 1 
 i � 1 D2i ! 1	 2i � 1 
 ! .

The so-defined formal power sum f � D 
 will have all formal properties of
the corresponding function f � z 
 . By ’formal’ properties, we mean proper-
ties formally coming from their series expansion.

3. Expression for a � D 
 :
For all i � 0, we have,

ai � ai � 1  ai � 2 �
then

∞

∑
i � 0

ai � 2Di 
∞

∑
i � 0
� ai � ai � 1 
 Di 

∞

∑
i � 0

aiD
i �

∞

∑
i � 0

ai � 1Di �

which implies,

a � D 
 	 a0 	 a1D  D2a � D 
 � D
�
a � D 
 	 a0 � �

Using a0  a1  1 and observing that 1 	 D 	 D2 is invertible since the
constant term is non-zero, we get

a � D 
� 1
1 	 D 	 D2 �

Let’s find formally the four first coefficients :
A first method consist in identifying term by term the coefficient of the for-
mal power sum. Formally � 1 	 D 	 D2 
 � a � D 
  1. Using b0  1 � b1  b2 
	 1 and bi  0 for i � 3, we can write 1 	 D 	 D2  ∑∞� 0 biDi. Therefore,
by definition,

�
1 	 D 	 D2 � � a � D 
� ∞

∑
i � 0

i

∑
l � 0

blai � lD
i

�
Then, for :

i  0 b0 � a0  b0 � 1
i  1 b1 � a0 � b0 � a1  b1 � 1 � 1 � 1  0

i  2 b2 � a0 � b1 � a1 � b0 � a2  	 1 � 1 � ��	 1 
 � a2  0

i  3 b3a0 � b2a1 � b1a2 � b0a3  	 1 	 21 � a3  0

A second algebraic method consist in considering the long division.

1
1 	 D 	 D2  1 � D � 2D2 � 3D3 � �����

Formally, we found a0  a1  1 � a2  2 � a3  3, which could also be found
using a classical induction directly on the � ai � i.
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Partial fraction expansion :

Since 1 	 D 	 D2  	
�
D � 1 � � 5

2 � � D � 1 �
� 5

2 � , we can write

a � D 
� 1
1 	 D 	 D2 

�
D � 1 � � 5

2

�
�

D � 1 �
� 5

2
�

Using,

� a � D 
 � 1 � � 5
2 � D 
 � ��	 1 � � 5

2

� �  � 5

5
�

and,

� a � D 
 � 1 	 � 5
2 � D 
 � ��	 1 	 � 5

2

� �  	 � 5

5
�

we get the partial fraction expansion,

a � D 
� � 5
5

� 1
1 � � 5

2 � D
	 1

1 �
� 5

2 � D
� �

This procedure was clearly defined in a purely formal way since we just
used algebraic operations for formal power sum.

Expression of the coefficients ai :
Since formally, for all � �

F ,

1
1 � � D


∞

∑
i � 0

��	 1 
 i � � D 
 i �

we can write,

a � D 
  2� 5 � 5
� 1

1 � 2
1 � � 5

D
	 2� 5 	 5

� 1

1 � 2
1 �
� 5

D

 2� 5 � 5
�

∞

∑
i � 0

� 	 2

1 � � 5
D � i 	 2� 5 	 5

�
∞

∑
i � 0

� 	 2

1 	 � 5
D � i


∞

∑
i � 0

� 2� 5 � 5
�
� 	 2

1 � � 5
� i 	 2� 5 	 5

�
� 	 2

1 	 � 5
� i � Di �

i.e., for all i � 0,

ai  2� 5 � 5
�
� 	 2

1 � � 5
� i 	 2� 5 	 5

�
� 	 2

1 	 � 5
� i

�

4. With � i � 1 
 ai � 1  3ai � 1 ��� i � 0;a0  1 
 , we have now,

∞

∑
i � 0

� i � 1 
 ai � 1Di  3
∞

∑
i � 0

aiD
i �

∞

∑
i � 0

Di �
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i.e.,

a � � D 
� 3 � a � D 
 � 1
1 	 D �

We can use the real topology and analytical operations to try to find the
components � ai � i. Consider the differential equation,

f � � x 
 	 3 f � x 
� 1
1 	 x �

We get the solution f � x 
  c � e3x for the homogenous system f � 	 3 f  0.
By variation of the constant, a function c � x 
 � e3x, solution of f � � x 
 	 3 f � x 
 

1
1 � x , can be found to be c � x 
  � e ! 3x

1 � x dx. Unfortunatly this integral is dif-
ficult to solve using simple mathematical tools. However, the reader will
observe that the set of functions � x �� � A � c � x 
�
 e3x � A �

�
satisfying the dif-

ferential equation permit us to determine the real formal power sum a � D 

by finding its components on � .

5. Using x � D 
  ∑∞
i � 0 xiDi and y � D 
  ∑∞

i � 0 yiDi, we have y � x � D 
�
  ∑∞
i � 0 yi � x � D 
�
 i=∑∞

i � 0 yi � x0 �
D∑∞

j � 0 x j � 1D j 
 i  ∑∞
i � 0 yi � xi

0 � P
	 i 
 � D 
 � , where P

	 i 
 � D 
 is a polynomial of
degree i � deg � P � D 
�
 without degree zero coefficients. It can be splitted in
two terms: the first is ∑∞

i � 0 yixi
0  xi

0 ∑∞
i � 0 yi and the second ∑∞

i � 0 yiP
	 i 
 � D 
 is

always well-defined.
(i) If x0  0, then the computation of any coefficient of y � x � D 
�
 requires a
f inite number of operations, i.e., we will be able to compute all the coeffi-
cients of y � x � D 
�
 .
(ii) If x0 � 0, the constant coefficient requires already an infinite number of
operations for being computed. The same statement can be made for the
other coefficients. Therefore g � x � D 
�
 will not be defined in general, except
if x � D 
 is a finite formal power sum, i.e., a polynomial.
Conclusion : The composition y � x � D 
�
 is defined iff

x0  0

or

y � D 
 is a polynomial �
Then, eeD � 1 with x0  0 is a well-defined formal power sum whereas eeD

is not.

Exercise 1.13

1. The inverse 1
x 	 D 
 exists if and only if x0 is invertible. Since for our case

x0  1, 1
x 	 D 
 exists. The composition x � y � D 
�
 exists if either y0  0 or

x � D 
 is a polynomial. In our case y0  0, so that x � y � D 
�
 exists. We
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get the first few coefficients of z � D 
 :  1
x 	 D 
 by using the equations

z0  1
x0
�

zi  	 1
x0

i � 1

∑
j � 0

z jxi � j � i � 1 �
In a similar way we get the first few coefficients of x � y � D 
�
 by deter-
mining the lower order terms of x0 � x1y � D 
 � x2y2 � D 
 ����� . The result
is x0  1, x1  	 1, x2  1

2 , y0  1, y1  1, y2  0, y0  1, y1  1,
y2  0.

2. We get

x � � D 
 



∞

∑
i � 0

1
i!

Di � �


∞

∑
i � 0

i
i!

Di � 1 
∞

∑
i � 1

1
� i 	 1 
 !Di � 1 

∞

∑
i � 0

1
i!

Di  x � D 
 �

and

y � � D 
 


	

∞

∑
i � 1

� 	 1 
 i
i

Di � �


∞

∑
i � 1

� 	 1 
 i � 1i
i

Di � 1 
∞

∑
i � 0
��	 1 
 iDi  1

1 � D �

3. We find f � D 
� eD and g � D 
� ln � 1 � D 
 .
4. Using 1

f 	 D 
  e � D we get 1
x 	 D 
  ∑∞

i � 0
	 � 1 
 i

i! Di. Further, since f � g � D 
�
 
1 � D, we get x � y � D 
�
� 1 � D.

Exercise 1.14
Greatest common divisor of 1573 and 308 :
We have,

1573  308 � 5 � 33 �
308  33 � 9 � 11 �
33  11 � 3 �

so that,

gcd � 1573 � 308 
  gcd � 308 � 33 
  gcd � 33 � 11 
  11 �

Extension of this algorithm :
We can easily extend this algorithm to find the Bezout equality by comput-
ing recursively,

11  308 	 33 � 9 

 308 	 � 1573 	 308 � 5 
 � 9

 a1573 � b308 �
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with a  	 9 and b  46. We could also show that the set of all � a � b 
 which
verify the equality is � 	 9 	 c308 � 46 � c1573 : c � � � .

Euclidian algorithm for polynomials :
Using the Euclidian algorithm, we can calculate the greates common divisor
of two polynomials. Recursive divisions occur as long as the remainder re-
mains a non-constant polynomial. If this constant polynomial is zero, then
the polynomial of smallest degree divides the polynomial of greater degree.
If this constant polynomial is a non-zero one, then the two polynomial are
relatively prime.
Therefore using Fig. 6.5, we get,

x4 	 x2 � x 	 1 x3 	 x2 � 1

	 � x4 	 x3 � x 

x3 	 x2 	 1

	 � x3 	 x2 � 1 

	 2

x � 1

x2 	 x � 1

x2 	 1

x4 	 x3 � x 	 1

	 � x4 	 x3 � x2 

	 x2 � x 	 1

	 � 	 x2 � x 	 1 


0

Figure 6.5: Euclidian Division in the Polynomial Ring.

gcd
�
x4 	 x3 � x 	 1 � x2 	 x � 1 �  x2 	 x � 1 �

gcd
�
x4 	 x2 � x 	 1 � x3 	 x2 � 1 �  gcd

�
x3 	 x2 � 1 ��	 2 �  1 �

Exercise 1.15
For a fixed m � 0, we have,If poss, try to check this ex.

more carefully
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∞

∑
n � 0

f � n � m 
 xn 
∞

∑
n � 0

∑
k � 0

�
n � k

m � 2k � � 2k
k � ��	 1 
 k

k � 1
xn


∞

∑
k � 0

∞

∑
n � 0

�
n � k

m � 2k � � 2k
k � ��	 1 
 k

k � 1
xn


∞

∑
k � 0

�
2k
k � � 	 1 
 k

k � 1

∞

∑
n � 0

�
n � k

m � 2k � xn


∞

∑
k � 0

�
2k
k � � 	 1 
 k

k � 1

∞

∑
j � k

�
j

m � 2k � x j � k


∞

∑
k � 0

�
2k
k � � 	 1 
 k

k � 1
� x � k �

∞

∑
j � 0

�
j

m � 2k � x j


∞

∑
k � 0

�
2k
k � � 	 1 
 k

k � 1
� x � k � xm � 2k

� 1 	 x 
 m � 2k � 1


∞

∑
k � 0

�
2k
k � 1

k � 1

� 	 x
� 1 	 x 
 2 �

k xm

� 1 	 x 
 m � 1


� � 1 	 x 
 2
	 2x

� � 1 	
�
� 1 � x 
 2
� 1 	 x 
 2 
 � xm

� 1 	 x 
 m � 1 �

The square root makes that we have 2 distinct cases:

– Case x � 1 or x 
 	 1:

∞

∑
n � 0

f � n � m 
 xn  x 	 1
x

xm

� 1 	 x 
 m � 1

– Case 	 1 
 x 
 1:

∞

∑
n � 0

f � n � m 
 xn  � 1 	 x 
 xm

� 1 	 x 
 m � 1

Therefore, taking 0 
 x 
 1, we can write

∞

∑
m � 0

∞

∑
n � 0

f � n � m 
 xnym  � 1 	 x 

∞

∑
m � 0

xm

� 1 	 x 
 m � 1 ym

 � 1 	 x 
 1
1 	 x 	 xy

for all � x � y 
 such 0 � xy
1 � x


 1 (Remark that there exists y 
 1 � x
x ).

It remains simply to use the Taylor expansion in y and then in x to determine
the coefficients of the function which are the exact estimates of the functions
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f � n � m 
 . It can be done simply as in the following:

∞

∑
m � 0

∞

∑
n � 0

f � n � m 
 xnym  1 	 x
1 	 x 	 xy

 1
1 	 xy

1 � x


∞

∑
i � 0

yixi � 1 	 x 
 � i


∞

∑
i � 0

yixi
�
1 �

∞

∑
p � 1

� 	 i 
 ��	 i 	 1 
 ������� 	 i 	 p � 1 

p!

xp �


∞

∑
i � 0

yixi
� ∞

∑
p � 0

� 	 1 
 p

�
i � p 	 1

p � xp �


∞

∑
i � 0

∞

∑
p � 0

� 	 1 
 p

�
i � p 	 1

p � xi � pyi


∞

∑
i � 0

∞

∑
n � i

��	 1 
 n � i

�
n 	 1
n 	 i � xnyi


∞

∑
m � 0

∞

∑
n � 0

� 	 1 
 n � m

�
n 	 1
n 	 m� xnym

�

We get, f � n � m 
� � 	 1 
 n � m 
 n � 1
n � m � � for all couples � m � n 
 .
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SOLUTIONS OF THE EXERCISES - 2

Exercise 2.1
Consider the shift register shown in Fig. 7.1 which describes all the states
of a finite-state machine. With a �X � -ary alphabet, the size of the state space
is �X � L � 1 and there are �X � � �X � L � 1  �X � L edges per trellis section. In
binary, we get 2L � 1 states and 2L edges.

L � 1 memory elements for �

n

x̃n
�

L � 1 x̃nx̃n
�

2 x̃n
�

1

Figure 7.1: Finite-State Machine: State of the Markov Chain.

Exercise 2.2
The transmitted symbols xn are i.i.d. random variables, taking on � 1 and
	 1 equally likely, and the received symbols are given by

yn 
n

∏
i � 1

xi � zn � n  1 ������� � N �

147
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+1+1 +1 +1

+1+1

+1 +1

-1-1

-1

-1 -1 -1

-1

-1
-1

+1

-1

-1
+1 +1

-1

+1

-1

+1
-1

Figure 7.2: Shift Register for L  3.

+1
-1

+1+1

+1

+1

-1

-1

-1

-1

-1

-1

-1

-1

+1+1

+1

+1

-1

-1

-1

-1

+1

+1

+1

+1

+1+1

+1

+1

-1

-1

-1

-1

-1

-1

-1

-1

+1+1

+1

+1

-1

-1

-1

-1

+1

+1

+1

+1

Figure 7.3: Shift Register for L  4.
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where zn is an i.i.d. sequence of random variables with density p � z 
 . We
have,

p � y1 ��������� yN � x1 ������� � xN 

	 a 
 p � y1 	 x1 ��������� y j 	

j

∏
i � 1

xi ������� � yN 	
N

∏
i � 1

xi � x1 ������� � xN 


	 b 
 N

∏
j � 1

p � y j 	
j

∏
i � 1

xi � x1 ������� � xN 


	 c 
 N

∏
j � 1

p � y j 	
j

∏
i � 1

xi � x1 ������� � x j 


	 d 
 N

∏
j � 1

p � y j 	 � jx j � � j � x j 


	 e 
 :
N

∏
n � 1

f � yn;xn; � n 
 �

where (a) comes from conditioning, (b) comes from the fact that zn is an
i.i.d. sequence of random variables, (c) is valid since the output is inde-
pendent of the future inputs, (d) is obtained with � j  ∏ j � 1

i � 1 xi after having

noticed that the output only depends on the product (∏ j � 1
i � 1

� � 	 1 � � 1 � ) of
the xi and (e) is written by defining f � j j ;x j ; � j 
 being p � y j 	 � jx j � � j � x j 
 .
A suitable state (which has a small state space) is therefore � n  ∏n � 1

i � 1 xi.
The Viterbi algorithm will find, after Bayes inversion, the sequence,

argmaxx1 � � � � � xN
p � y1 ��������� yN 
� argmaxx1 � � � � � xN

N

∏
n � 1

pZn � yn 	 � nxn 
 �

as shown in Fig. 7.4 for the example of the exercise where N  4 and where

pZ � z 
 : 
�

2 � � z �4 � � z � � 2 �
0 � otherwise �

Assuming that the received sequence is

y1  	 0 � 1 � y2  0 � 5 � y3  0 � 9 � y4  	 0 � 2 �
the Viterbi algorithm to this case to find the most likely transmitted se-
quence � x̃1 � x̃2 � x̃3 � x̃4 
  � 	 1 	 1 � 1 	 1 
 . The complexity of the Viterbi
algorithm is roughly �X � L � 1, (here 4 � 21  8). The complexity is around
3 �X � L � 1 for the BCJR.

Exercise 2.3
We have the discrete-time channel of Fig. 7.5. The states of the channel
permit us to see it as a finite-state machine.
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0.034375

0.103125
0.225

0.275
0.002578125

0.0146953125

0.0097968751

−1

+1

+1 +1 +1
−1 −1 −1

0.048984375

+1

−1 −1

+1 +1

−1

Figure 7.4: Binary trellis with L  2 and N  4.

Shift register with length 

h0 h1 hL ! 1

L � 1

yi

zi

xi ! 1 xi ! L
�

1xi xi ! 2

h2

Figure 7.5: Channel Model: additive i.i.d. Gaussian Noise, L Taps.
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We consider sequences of N bits with L 
 
 N. Assuming the channel initial
state is known, i.e., x̃ � L � 1 � x̃ � L � 2 ������� � x̃ � 1 are known. We have,

p � y0 ��������� yN � 1 � x̃0 ������� � x̃N � 1 
  p � Yi � i � � X̃i � i � y0 ��������� yN � 1 � x̃0 ��������� x̃N � 1 

 p � Yi � i � � X̃i � i

� �
yi � 0 � i � N � 1 � � x̃i � 0 � i � N � 1 �

 p � Zi � i � � X̃i � i
� �

yi 	
L � 1

∑
n � 0

hnx̃i � n � 0 � i � N � 1 � � x̃i � 0 � i � N � 1 �
 p � Zi � i

� �
yi 	

L � 1

∑
n � 0

hnx̃i � n � 0 � i � N � 1 �
 ∏

0 � i � N � 1
pZi � yi 	

L � 1

∑
n � 0

hnx̃i � n 
 �

where pZi � yi 	 ∑L � 1
n � 0 hnx̃i � n 
� 1

2 � � 2 exp ��	 � � yi � ∑L ! 1
n � 0 hnx̃i ! n � � 2

2 � 2 
 since the Zi are
i.i.d. circularly-symmetric complex-valued Gaussian random variables. Skip-
ping the indices, we get,

log p � y0 ��������� yN � 1 � x̃0 ��������� x̃N � 1 
 
N � 1

∑
i � 0

log p � yi 	
L � 1

∑
n � 0

hnx̃i � n 
 �

and, using the notations � i  � x̃i � L � 1 � x̃i � L � 2 ������� � x̃i � 1 
 and m � yi; x̃i; � i 
 
log p � yi 	 ∑L � 1

n � 0 hnx̃i � n 
 , we can write,

max
x̃0 � � � � � x̃N ! 1

p � y0 ��������� yN � 1 � x̃0 ������� � x̃N � 1 
  max
x̃0 � � � � � x̃N ! 1

N � 1

∑
i � 0

m � yi; x̃i; � i 
 �
We have seen in class that an efficient algorithm to accomplish this task
(maximization on the sequence) is called Viterbi algorithm.

Exercise 2.4
A trellis section for an (inter-symbol interference) ISI channel should have
�X � L � 1 states and �X � outgoing edges per state. It follows that � a 
 can not
be such a trellis section, but � b 
 , � c 
 and � d 
 fulfill this criterion. From our
homework we know that the section in � b 
 is the trellis section for the case
�X �  2 and L  3 and, similarly, we see that the figure in � c 
 corresponds
to the case �X �  4 and L  2. The figure in � d 
 does not correspond to a
valid trellis section since it does not have the required “butterfly” structure.

Exercise 2.5
The preliminaries have been reviewed in class.

Exercise 2.6
The first method used in the Internet was the distance vector routing which
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does not have a detailed global view of the network. Now a topology
database is elaborated in each router using link state updates. Every router
has to perform a kind of Viterbi algorithm called Dijkstra algorithm. This
algorithm is implemented in most of the recent routers using TCP/IP. (See
networking lecture for more informations).
Assuming a student from EPFL located in S in Fig. 7.6 wants to go quickly
to to eat some tampas on the ramblas in E. He will intuitively perform the
following example of a shortest path algorithm before taking his car.

Lausanne

Barcelona

Marseille

Lyon

Paris

Milano

Roma

300

400

300

400

200

300

400

400

E

S

Figure 7.6: Graph with Cities as Nodes and Routes as Edges.

A time t  1, Milano is at 300km using edge Lausanne-Milano. OK.
A time t  2, Lyon is at 200km using edge Lausanne-Lyon. OK.
A time t  3, Lyon is at 600km using edge Milano-Lyon from state Milano.
This path is not the shortest one. Path can be rejected since the surviving
path at the edge Lyon has to be the shortest one.
A time t  4, Marseille is at 500km using edge Lyon-Marseille from state
Lyon. OK.
A time t  5, Marseille is at 700km using edge Milano-Marseille from state
Milano. Path is rejected.
A time t  6, Barcelona is a 900km using edge Marseille-Barcelona from
state Marseille with cumulative value 500km. OK.
The rest of the computations will not affect the value of the shortest path.



153

The shortest path algorithm indicates us that the node E is at distance 900
of the source node S.

Exercise 2.7
Given i ��� 1 ������� � N � and the corresponding couple � xi � 1 � xi 
 . The couple is
now chosen and fixed. The APP estimator for the algorithm is,

� x̃i � 1 � x̃i 
  argmax 	 xi ! 1 � xi 
 p � xi � 1 � xi � y0 � y1 ��������� yN 
	 a 
 argmax 	 xi ! 1 � xi 
 p � y0 � y1 ��������� yN� �
	 �
�

y

� xi � 1 � xi 


 argmax 	 xi ! 1 � xi 
 ∑
�

x s 	 t 	 xi ! 1 � xi

p � �

y � �

x 


	 b 
 argmax 	 xi ! 1 � xi 
 ∑
�

x s 	 t 	 xi ! 1 � xi

N

∏
j � 0

p � y j 	
L � 1

∑� � 0

h � x j � � ��� x j � L � 1 ������� � x j � 2 
 � x j � 1� � 	 �� j

� x j 


	 c 
 argmin 	 xi ! 1 � xi 
 ∑
�

x s 	 t 	 xi ! 1 � xi

� � y j 	
L � 1

∑� � 0

h � x j � � � �

where (a) is induced by Bayes and the equal priors, (b) comes from the
noise sequence of i.i.d. random variables and (c) comes from the Gaussian
characteristics of the noise. Briefly, the algorithm will have approximately
the same complexity as the BCJR and will be similar regarding the forward
and backwar recursions. The distinction will be in the � -estimation: here
the estimate for the initial couple � xi � 1 � xi 
 will be obtained by additioning
the probabilities of all the states 9at a fixed time) in which the couple ap-
pears.

Exercise 2.8
Recall that, by convention, the region of convergence of a rational filter

H � z 
  P 	 z ! 1 

Q 	 z ! 1 
  ∑∞

� ∞ hnz � n is the set of all complex of magnitude larger
than the magnitude of the largest magnitude poles. This set contains ∞. The
filter H � z 
 is

– causal if the system is non-anticipative, i.e., if hn  0 for all n 
 0.
This justifies the convention that the region of convergence must be
outside the outermost pole.

– stable if a bounded input leads to a bounded output which can be
proven to be equivalent to all poles are inside the unit circle.

– minimum phase if all zeros and poles are inside the unit circle.

1. Causality :
The point ∞ is not a zero, i.e., degz ! 1

�
P � z � 1 
�� � degz ! 1

�
Q � z � 1 
 � .
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Therefore, using the partial fractions expansion over the complex plane,

we can first write H � z 
 as H � z 
� g0 � ∑∞
n � 0

gnz ! 1	 1 � cnz ! 1 
 kn . The geomet-

ric sum expansion of all partial fractions will secondly clearly lead to
a causal extension of H � z 
 of the form H � z 
� ∑∞

0 hnz � n.
Stability :
By definition, all poles are in the unit circle.
Conclusion :
A minimum phase filter is a causal and stable filter.

2. The inverse of H � z 
 is H � 1  Q 	 z ! 1 

P 	 z ! 1 
 . It is again a minimum phase

filter which is stable and causal.

3. We have

�H � e2 � j f 
 �  � e � 2 � j f 	 a
� �

� 1 	 ae � 2 � j f � 
�

1 	 2R e � ae � 2 � j f 
 � � a � 2
1 	 2R e � ae � 2 � j f 
 � � a � 2  1 �

4. Consider the all-pass filter Hc � z 
  z ! 1 � c �
1 � cz ! 1 . Its inverse H � 1

c � z 
  1 � cz ! 1

z ! 1 � c �

is also a all-pass filter. Observe now that the filter H � z 
 H � 1
c � z 
 de-

rived from H(z) has same frequency response as H � z 
 . But, since
H � z 
 H � 1

c � z 
� H1 � z 
 � 1 	 cz � 1 
 , the new filter having a new zero in c
will no longer have any zeros or poles outside the unit circle.

This approach can be easily generalized for a filter H � z 
 with n ze-
ros c1 � c2 ������� � cn outside the unit circle. A minimum phase filter with
equal frequency can be derived from H � z 
 by simply multiplying H � z 

by the corresponding product H̃ap � z 
� ∏n

i � 1 H � 1
ci
� z 
 � which is an all-

pass filter. Denote H̃min � z 
 this minimum phase filter, it is obtained
as,

Hmin � z 
� H � z 
 H̃ap � z 
 �
As asked in the exercise, notice that this equality can be written H � z 
 
Hmin � z 
 Hap � z 
 where Hap  � H̃ap � z 
 � � 1 is also an all-pass filter.

5. We have
h0  H � ∞ 
� lim

z � ∞
H � z 
 �

But limz � ∞ Hmin � z 
  hmin � 0 since a minimum-phase filter is causal.
Morevore limz � ∞ � H̃ap � z 
 �  ∏n

i � 1 � ci � since H̃ap � z 
 is a product of fac-
tor of the type H � 1

ci
� z 
 . Both limits exists and the limit of the prod-

uct Hmin � z 
 Hap � z 
� Hmin � z 
 � H̃ap � z 
 � � 1 is therefore the product � h0 � 
� hmin � 0 � � �∏n

i � 1 � ci � � � 1 
 1 � � hmin � 0 � since, for all i, � ci � � 1. I.e., we
get,

� h0 � 
 � hmin � 0 � �
in other words, a minimum phase filter Hmin � z 
 derived from a filter
H � z 
 maximizes the partial energy term corresponding to k  0.
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Exercise 2.9

1. We have

Rw � k 
  � �wn w
�
n � k �

 � � ∑
m � 0

fmxn � mwn ∑
i � 0

f
�
i x

�
n � k � i �

 � � ∑
m � 0

∑
i � 0

fm f
�
i xn � mx

�
n � 	 k � i 
 �

 � � ∑
m � 0

∑
l � k

fm f
�
l � kxn � mx

�
n � l �

 ∑
m � 0

∑
l � k

fm f
�
l � k � � xn � m x

�
n � m � 	 l � m 
 �

 ∑
l � k

f
�
l � k ∑

m � 0
fm � � xn � m x

�
n � m � 	 l � m 
 �

 ∑
l � k

f
�
l � k ∑

m � 0

fmRx � l 	 m 
 �

2. Assume first that f fulfils the equations (A.4). All the terms in the
double sum are equal to zero so that

� k � 1 Rw � k 
� 0 �
3. Since Rw � k 
  R

�
w ��	 k 
 , i.e., both quantities are conjugate symmet-

ric, the previous work show that

� k � 1 Rw � 	 k 
� 0 �
Globally this implies that Rw � k 
  0 for k � 0. Therefore w is white,
i.e., f is a whitening filter.

Exercise 2.10
The equivalent discrete time channel model is

yn  ∑
k

Rg � k 
 xn � k � zn �

where zn is a complex valued circularly symmetric Gaussian process with
Rz � k 
� N0Rg � k 
 . The z-transform leads to

Y � z 
� Sg � z 
 X � z 
 � Z � z 
 �
Assume we filter this received signal through some filter F � z 
 .

1. To eliminate the intersymbol interference completely, we have to choose
F � z 
� 1

Sg 	 z 
 (zero forcing criterion).
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2. At the output of the filter, the signal is then F � z 
 Y � z 
  X � z 
 � F � z 
 Z � z 

and the power spectral density of the noise Z̃ � z 
 :  F � z 
 Z � z 
 is

Sz̃  N0Sg � z 
 � F � z 
 � F
� � 1

z
� 


 N0Sg � z 
 F � z 
 � F
� � 1

z
� 


 N0Sg � z 
 1
Sg � z 


1

S �
g � 1

z � 

 N0Sg � z 
 1

Sg � z 

1

Sg � 1
z 


 N0

Sg � z 
 �
3. The noise power for this design criterion is then

� 2
LE-ZF :  � � � z̃n � 2 �  RZ̃ � 0 



� 1

2

� 1
2

N0

Sg � e2 � j f 
 d f �
� 1

2

� 1
2

N0

Sg � e2 � j f 
 � N0
d f  : � 2

LE-MMSE �

using Equation 2.8.

Exercise 2.11
We use Jensen’s inequality - concavity of the function ln in (a) - to write,

�

DFE-ZF :  N0 exp

� � 1
2

� 1
2

ln
� 1

Sg � e2 � j f 
 � d f

�

	 a 
� N0 exp

�
ln

� � 1
2

� 1
2

� 1
Sg � e2 � j f 
 � d f � �


� 1

2

� 1
2

N0

Sg � e2 � j f 
 d f  : �

LE-ZF �
Exercise 2.12
In the naive precoding scheme discussed in class, the transmitted signal is

equal to X̃ � z 
  X 	 z 

B0
	 z 
 with B0 � z 
  Sg 	 z 


Ag
. Assuming that Rx � k 
  � � k 
 , we

get Sx̃ � z 
  S
�

g
	 z 


Ag

S
�

�g
	 1

z � 

A �g

. Define H � z 
 being the filter H � z 
  Ag

S
�

g 	 z 
 . H � z 

is the inverse of the monic filter

S
�

g
	 z 


Ag
and is itself monich and causal. We

have,

Rx̃ � 0 
 
� 1

2

� 1
2

�H � e2 � j f 
 � 2d f


∞

∑
k � 0

� hk � 2 �
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using Parseval and the causality property of H(z).Then

Rx̃ � 0 
  1 �
∞

∑
k � 1

� hk � 2 � 1 �

since the filter is monic.
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Exercise 3.1
With,
∞

∑
i � 0

giD
i  G � D 
 :  G1 � D 
 � G2 � D 
 

∞

∑
i � 0

g1 � iDi �
∞

∑
i � 0

g2 � iDi 
∞

∑
i � 0
� g1 � i � g2 � i 
 Di �

we have, for all i � 0,

gi � p  gi � p1 p2  g1 � i � p2 p1 � g2 � i � p1p2 �
G1 � D 
 has period p1, then we have g1 � i � p2 p1  g1 � i. Similarly, G2 � D 
 has
period p2, then g2 � i � p1 p2  g2 � i. Therefore,

gi � p  g1 � i � g2 � i  gi �
i.e., G � D 
 has period p  p1 p2.

Note that a stronger statement is true: If p1 and p2 are the least peri-
ods of G1 � D 
 and G2 � D 
 , respectively, then the least period of G � D 
 is
lcm � p1 � p2 
 .
Exercise 3.2
From class, we have,

g0 � D 
 
r

∑
i � 1

� 1

∑
j � � i

cis jD
i � j �

where the initial state is indicated by the r-uple S0  � s � r � s � r � 1 ��������� s � 1 
 .
We can write,

g0 � D 
 
r

∑
i � 1

i � 1

∑
l � 0

cisl � iD
l


r � 1

∑
l � 0

� r

∑
i � 1

cisl � i � Dl

�

159
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One-to-one correspondance between polynomials and initial states :
Using g0 � D 
  ∑r � 1

l � 1 g0 � lDl and identifying coefficient by coefficient, we get
a square system of r 	 1 equations and r 	 1 unknowns � si 
 � r � i � � 1 over the
binary field. It has one and only one solution. Therefore the mapping be-
tween polynomials g0 � D 
 and initial states S0 is bijective.

Conclusion :
Since the polynomial c � D 
 is primitive, it generates the maximum length
LFSR. The period is 2r 	 1 for all non-zero initial state. Two different non-
zero polynomials g1 � D 
 and g2 � D 
 correspond to two different non-zero
initial states. Let’s call them S1 and S2, respectively. Since all the cycle
composed by the non-zero state will be described by the successive states
of the LFSR, the two sequences G1 � D 
 and G2 � D 
 will be simply delayed
versions of each other.

Linearity of the correspondance between polynomials and initial states :
The linearity over the binary field of the mapping between polynomials
g0 � D 
 and initials states S0 comes also clearly from the previous equation.
(Take simply two polynomials g0 � D 
 and g̃0 � D 
 associated to states S0 and
S̃0, and see that their sum is assosiated to the state S0 � S̃0  � s � r � s � r � 1 ������� � s � 1 
 �
� s̃ � r � s̃ � r � 1 ������� � s̃ � 1 
 .

Conclusion :
The sequences G1 � D 
 , G2 � D 
 and G1 � D 
 � G2 � D 
  g1

	 D 
 � g2
	 D 


c 	 D 
 will also

be delayed versions of each other since the sequence G1 � D 
 � G2 � D 
 sim-
ply starts from an initial state which is S1 � S2. (Once more all the cycle
composed by the non-zero initial states is visited.)

Exercise 3.3
Consider two non-trivially shifted versions of a non-zero output sequence
which agree at a given bit position. Since the MLSR has maximum length,
they correspond to two different, non-zero initial states which agree at a
given position j. The sum of those two output sequences is a non-zero
sequence which is a shifted version of one of them (See Ex. 3.2, the memory
r MLSR has maximum length : starting in state Ssum, it goes through all its
non-zero zero states during a run cycle.). Moreover, this sum corresponds
to an initial state Ssum which has a 0 at a given position j .(If the two output
sequences agree by 1, we have 1 � 1  0  ssum � j at the given position j in
the initial state. If they agree by 0, we have 0 � 0  0 in the initial state.)
We have 2r � 1 	 1 non-zero states with 0 at the given position j. We have
2r 	 1 non-zero states. Therefore, we can clearly state that the two versions
will agree at a given bit position with probability 2r ! 1 � 1

2r � 1

Exercise 3.5
Chernov bound :
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We have, for all s � 0,

Pr �
n

∑
i � 1

Xi � � �  Pr � es∑n
i � 1 Xi � es

�
� �

so that, using the Markov inequality,

Pr �
n

∑
i � 1

Xi � � � � � � es∑n
i � 1 Xi �

es

�
�

This is true for all s � 0, therefore

Pr �
n

∑
i � 1

Xi � � � � min
s � 0

� � � es∑n
i � 1 Xi �

es

�
� �

Since X1 ������� � Xn are i.i.d. random variables, the random variables esX1 ��������� esXn

are also i.i.d., we get finally,

Pr �
n

∑
i � 1

Xi � � � � min
s � 0

�
� � esX1 � ne � s

�
� �

Exponential bound for binary variables :
Consider now a binary random variable taking values in � 	 1 � � 1 � with

equal probability. The Chernov bound Pr � ∑n
i � 1 Xi � � � � mins � 0

�
� cosh � s 
�
 ne � s

�
�

can be written Pr � ∑n
i � 1 Xi � � � � mins � 0

�
f � s 
 n � using � 

�
n (Notice that

� is a function of n) and the function f � s 
  � cosh � s 
�
 e � s �

. Computing

f � � s 
 
�
sinh � s 
 	 � cosh � s 
 � e � � s, we can find the minimum of the func-

tion f . We get the upperbound,

Pr �
n

∑
i � 1

Xi � � � n 
�� � �
cosh � atanh � 
 exp ��	 � atanh� 
 � n �

� �
exp

� � atanh � 
 2
2

	 � atanh� � � n �

using the inequality cosh � x 
 � e
x2
2 which may be obtained by comparing

termwise the Taylor series. For all the � such that 0 � � � 1
2 , we clearly

got an exponential bound which is of interest and tends to 0 when n goes to
infinity. I.e., for all � � 0 � 5, we can find a k �


 1 such that,

Pr �
n

∑
i � 1

Xi � � n � � kn
�

�
Remark :
From the Chernov bound Pr � ∑n

i � 1 Xi � � � � mins � 0

�
� cosh � s 
�
 ne � s

�
� , us-

ing cosh � x 
 � ex2 � 2, we may also get the useful non-exponential bound,

Pr �
n

∑
i � 1

Xi � � � � min
s � 0

�
exp � ns2

2
	 s � 
��  e

� 2
2n �
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which is of interest for values of the type �  ˆ� � n.

Bound for i.i.d. Gaussian random variables :
Consider Gaussian random variables with i.i.d. distributions N � 0 � � 2 
 . We
have,

� � esX1 � 
� ∞

� ∞

1� 2 ��� e � x2

2 " 2 esxdx

 e
s2 " 2

2

� ∞

� ∞

1� 2 ��� e �
x2 ! 2 " 2sx

� � s " 2 � 2

2 " 2 dx

 e
s2 " 2

2

� ∞

� ∞

1� 2 ��� e �
� x ! s " 2 � 2

2 " 2 dx

 e
s2 " 2

2

� ∞

� ∞

1� 2 ��� e �
� y � 2

2 " 2 dy

 e
s2 " 2

2

�
Using the Chernov bound,we get

Pr �
n

∑
i � 1

Xi � � � � min
s � 0

�
e

ns2 " 2
2 � s

�
�  min

s � 0

�
es 	 ns " 2

2 �

�

 �  exp

�
	 � 2

2n � 2 � �
which is of interest for �� � � � n.

Remark :
This result can be compared with the Q-function which is an upperbound for
the Gaussian case. Indeed, we know that the random variable ∑n

i � 1 Xi which
is a sum of Gaussian random variables with i.i.d. distributions N � 0 � � 2 
 is a
Gaussian random variable with distribution N � 0 � n � 2 
 . Therefore we have
directly the upper bound,

Pr �
n

∑
i � 1

Xi � � � � � ∞� 1� 2 � � n � e � x2

2n " 2 dx  Q � �� n � 
 �

so that, using the upperbound of Ex. 1.5, we get

Pr �
n

∑
i � 1

Xi � � � � exp
�
	 � 2

2n � 2 � �
i.e., the same result as obtained using the Chernov bound technique.

Exercise 3.6
Assume we allow each user to scale his input signal by a factor strictly � ,
i.e., the baseband signal is given by

� � Ec ∑
n

xnsnh � t 	 nTc 
 �
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In our original anaylis Ec was an arbitrary constant. So for the new system
we just have to replace Ec with � 2Ec. But assuming the background noise
is neglible, the performance of the system is not changed: this is true since
although the energy of the signal of interest is changed by a factor � 2 the
interference caused by other users is also boosted by the same factor. In a
well-designed system one should therefore probably operate at the smallest
power for which the background noise is smaller than the noise caused by
the other user’s interference.

Exercise 3.7
The steps of the analysis stay the same except that we get the noise variance,

� 2 
k

∑
j � 1

E � j 

NTc

� ∞

� ∞
�H � f 
 � 4d f  � k 	 1 
 E

N �

But note that in this case the noise is real-valued! Therefore the bit error
probability is changed to Q �

�
E
N0

 (instead of Q �

�
2E
N0

 previously). Since

N
k � 1 corresponds to E

N0
, the number of supportable users is half what it was

for the original system.

Remark :
Two independent real-valued random variables A and B define a complex-
valued random variable Y as

Y  A � jB �

so that we have � 2
Y  � 2

A � � 2
B and � 2

Y  2 � 2
A  2 � 2

B if A and B are i.i.d..

Exercise 3.8
Once more the analysis stays the same except that the constellation in Fig.
8.1 (i) is replaced by the constellation in Fig. 8.1 (ii). Note that now the
minimum distance between points is smaller by a factor � 2. Therefore we
can only support half the number of users as before assuming that again
background noise is negligible. We see that the overall bit rate (sum of all
individual bit rates) is again unchanged since now we have half the number
of users transmitting at twice the individual bit rate.

Exercise 3.9

1. The total noise power is just the integral SZ � f 
 over � , which is equal
to 2 N0W

2B B  N0W .
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�
Eb � Eb

2

d � 2
�

Eb

�
Eb�

�
Eb

(i)

(ii)

Figure 8.1: BPSK and QPSK Constellation and Decision Region.
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2. The signal portion is equal to�
x � t 
 g �i � t 	 iT 
 dt 

� � E ∑
j

u jg j � t 	 jT 
 g �i � t 	 iT 
 dt

 � E ∑
i

ui

�
gi � t 	 jT 
 g �i � t 	 iT 
 dt

 � Eui �
where we have used the fact that the functions gi � t 	 iT 
 are orthonor-
mal.

3.

zi 
�

Z � t 
 g �i � t 	 iT 
 dt


�

Z � t 
 1� N

N � 1

∑
n � 0

s
�
iN � nh � t 	 nTc 
 dt

 1� N

N � 1

∑
n � 0

s
�
iN � n

�
Z � t 
 h � t 	 nTc 
 dt �

4. Note that the random variables WiN � n is the result of passing Z � t 

through a linear time invariant filter with impulse response h ��	 t 
 and
sampling at time iT � nTc. From this, and the properties of Z � t 
 it fol-
lows that WiN � n is a complex-valued circularly symmetric Gaussian
random variable with zero mean. The filtered process has a power
spectral density which has the same shape as the power spectral den-
sity of Z � t 
 but its magnitude is smaller by a factor 1

W since �H � f 
 � 
1� w over the frequency region of interest. Therefore the variance of

WiN � n, which is equal to the integral of the power spectral density of
the filtered process is equal to 2 N0

2B B  N0.

5. zi is the finite sum of complex-valued circularly symmetric Gaussian
random variable with zero mean and, therefore, is a complex-valued
circularly symmetric Gaussian random variable with zero mean itself.
Finally, we have

� � zi z
�
j �  �

� 

1� N

N � 1

∑
n � 0

s
�
iN � nWiN � n

� 

1� N

N � 1

∑
m � 0

s jN � mW
�
jN � m

� �
 1

N

N � 1

∑
n � 0

N � 1

∑
m � 0

� � s �iN � n s jN � m � � �WiN � nW
�
jN � m �

 1
N

N � 1

∑
n � 0

N � 1

∑
m � 0

�
i � j
�

n � m � �WiN � nW
�
jN � m �

 �
i � j

1
N

N � 1

∑
n � 0
� �WiN � nW

�
iN � n �

 N0
�

i � j �
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A

LINEAR PREDICTION

Assume we have two (correlated) zero mean WSS stochastic processes xn and yn

and we would like to predict xn based upon the observations � yk � k � n � K , where
K is some given set of indices. Although our setup encompasses more general
scenarios we will in particular be interested in the following two examples.

Example 23. In the first scenario we have yn  xn and K  � k : k � 0 � . In words,
we want to predict xn based upon the observation of its past samples.

Example 24. In the second scenario we have yn � xn but now we allow K  � .

We are interested in linear prediction, i.e., our prediction has the form

∑
k � K

hkyn � k �
Define the error sequence en as

en :  xn 	 ∑
k � K

hkyn � k � (A.1)

Clearly, we will be interested in keeping the error “as small as possible.” More
precisely, we choose as a criterion to minimize the mean-squared error, i.e., to
minimize � � � en � 2 � . Therefore this criterion is often abbreviated as MMSE. How
should we choose the filter coefficients in order to minimize � � � en � 2 � ? Let Rx � k 
 : 
� � xn x

�
n � k � , Ry � k 
 : 
� � yn y

�
n � k � and Rx � y � k 
 : 	� � xn y

�
n � k �  R

�
x � y ��	 k 
 .

We claim that we should choose the filter coefficients in such a way that

� � en y
�
n � k �  0 � k � K � (A.2)

This is called the orthogonality principle. The intuition behind this choice is that
if there were some remaining correlation then we could use this correlation to

169



170 APPENDIX A. LINEAR PREDICTION

perform a better prediction! To see this claim, let e �n denote the error sequence
associated to any linear predictor based upon the set of observations � yk � k � n � K
and let en denote the error sequence associated to the linear predictor derived by
the orthogonality principle. Then we have

� � � e �n � 2 �  � � � � e �n 	 en 
 � en � 2 �
 � � � � e �n 	 en 
 � 2 � � � � � en � 2 � � 2Re � � � e �n 	 en 
 e

�
n �

 � � � � e �n 	 en 
 � 2 � � � � � en � 2 � �

2Re

�
� � � � xn 	 ∑

k � K
h �kyn � k 
 	 � xn 	 ∑

k � K
hkyn � k 
�
 e

�
n �

�

 � � � � e �n 	 en 
 � 2 � � � � � en � 2 � � 2Re

�
� � � ∑

k � K
� hk 	 h �k 
 yn � k 
 e

�
n �

�

 � � � � e �n 	 en 
 � 2 � � � � � en � 2 � � 2Re

�
∑

k � K
� hk 	 h �k 
 � � en y

�
n � k �

� �

 � � � � e �n 	 en 
 � 2 � � � � � en � 2 �
� � � � en � 2 � �

In order to find the coefficients of the filter note that for k
� K

� � en y
�
n � k �  � � � xn 	 ∑

m � K
hmyn � m 
 y

�
n � k �

 � � xn y
�
n � k � 	 ∑

m � K
hm � � yn � m y

�
n � k �

 Rx � y � k 
 	 ∑
m � K

hmRy � k 	 m 
 �
Therefore, we have the defining equations

Rx � y � k 
� ∑
m � K

hmRy � k 	 m 
 � k
� K � (A.3)

Example 25. Consider first the case xn  yn and K  � . Clearly, this is a trivial
example since in this case we are allowed to look at the very same sequence (in its
entirety) which we want to predict and therefore it is obvious that we can achieve
perfect prediction! Nevertheless, proceeding formally, the defining equations in
this case specialize to

Rx � k 
�
∞

∑
m � � ∞

hmRx � k 	 m 
 � k
� �

�
Taking the z-transform this is equivalent to

Sx � z 
� Sx � z 
 H � z 
 �
The solution is obviously H � z 
� 1, or hn  � � n 
 , as expected.
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Example 26. Consider now the case xn  yn and K  � k : k � 0 � . Let’s first derive
the optimal filter in an alternative way. We claim that in this case the process ek is
itself uncorrelated. To see this note that

Re � k 
  � � en e
�
n � k �

 � � en � xn � k 	
∞

∑
m � 1

hmxn � k � m 

� �

 � � en x
�
n � k � 	

∞

∑
m � 1

h
�
m � � en x

�
n � k � m �

 0 �
Note that from (A.1), E � z 
  F � z 
 X � z 
 , where F � z 
  1 	 H � z 
 and where H � z 

is strictly causal. Since by the above derivation en is white, we see that fn is the
monic and causal whitening filter. From H � z 
� 1 	 F � z 
 , H � z 
 follows trivially.

Alternatively, we can start from the defining equations given in (A.3) which
specialize for the present case to

∑
m � 0

fmRx � k 	 m 
  0 � k � 1 � (A.4)

where we defined the new filter fn related to hn by

fn : 

��� �� 0 � n 
 0 �
1 � n  0 �
	 hn � n � 1 �

It is not immediate obvious that this implies that fn should be the monic and causal
whitening filter. You will show in Exercise 2.9 that this is indeed true.

Example 27. As a final example consider the case x � y and K  � . Since K
equals � we can take the z-transform of the defining equations and derive at

Sx � y � z 
� H � z 
 Sy � z 
 �
Therefore, the optimal filter in this case is given by

H � z 
� Sx � y � z 

Sy � z 
 � (A.5)
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B

SPECTRAL FACTORIZATION

Let R � k 
 be a correlation function and assume that the associated spectrum S � z 

is rational. Observe that R � k 
  R

� ��	 k 
 , which implies that S � z 
  S
� � 1 � z � 
 .

We conclude that the roots (zeros) of S � z 
 have the symmetry that if � is a pole
(zero) then so is 1 ��� � . We say that � and 1 ��� � are conjugate-symmetric. This
symmetry relationship is shown in Fig. B.1. Note that S � z 
 can not have poles on

�
1 � � �

1

j

Figure B.1: A conjugate-symmetric pair � and 1 ��� � .
the unit circle since it is easy to check that otherwise

R � 0 
 : 
� 1

2

� 1
2

S � e2 � j f 
 d f  ∞ �
Zeros, on the other hand can be located on the unit circle but one can show that
such zeros have to appear in pairs also.

From these observations it follows that S � z 
 has the form

S � z 
� A2 ∏M
k � 1 � 1 	 ckz � 1 
 � 1 	 c

�
kz 


∏N
k � 1 � 1 	 dkz � 1 
 � 1 	 d

�
k z 
 �
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where � ck � � 1, � dk � 
 1 and where A
� � . Therefore S � z 
 can be factored as

S � z 
 
�
A

∏M
k � 1 � 1 	 ckz � 1 


∏N
k � 1 � 1 	 dkz � 1 
 � � A ∏M

k � 1 � 1 	 c
�
kz 


∏N
k � 1 � 1 	 d

�
k z 

�

 S � � z 
 S � � z 
� S � � z 
 
 S � � 1 � z � 
 � � � (B.1)

where S � � z 
 is causal and, S � � z 
 is anticausal.

Now, � 1
2

� 1
2

ln � S � e2 � j f 
 � d f  lnA2 �
M

∑
k � 1

� 1
2

� 1
2

ln 
 1 	 cke � 2 � j f � d f �
M

∑
k � 1

� 1
2

� 1
2

ln 
 1 	 c
�
ke2 � j f � d f 	

N

∑
k � 1

� 1
2

� 1
2

ln 
 1 	 dke � 2 � j f � d f 	
N

∑
k � 1

� 1
2

� 1
2

ln 
 1 	 d
�
k e2 � j f � d f

 lnA2

�
To see the last step note the following. If a

� � , � a � � 1, then� 1
2

� 1
2

ln 
 � 1 	 ae � 2 � j f 
 � 1 	 a
�
e2 � j f 
 � d f


� 1

2

� 1
2

ln 
 1 � � a � 2 	 
 ae � 2 � j f � a
�
e2 � j f � � d f


� 1

2

� 1
2

ln 
 1 � � a � 2 	 2 � a � 
 e � 2 � j f � � a � e2 � j f � � a � � d f


� 1

2

� 1
2

ln 
 1 � � a � 2 	 2 � a � cos � 2 � f 	 �
a 
 � d f


� 1

2

� 1
2

ln 
 1 � � a � 2 	 2 � a � cos � 2 � f 
 � d f

 0 �
where the last integral can be found in standard integral tables. Alternatively, if
� a � 
 1 then we can argue that the function ln 	 1 � az 


z is analytic for � z � � 1. There-
fore, by Chauchy’s formula� 1

2

� 1
2

ln � 1 	 ae
� 2 � j f 
 d f  1

2 � j

�
� z � � 1

ln � 1 	 az 

z

dz  0 �
It follows that

A2  exp

� � 1
2

� 1
2

ln � S � e2 � j f 
 � d f

�
� (B.2)
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Observe from (B.1) that S � � z 
 is the product of the constant A with a monic
causal/anticausal filter. Therefore,

S � � z 
�
exp � � 1

2

� 1
2

ln � S � e2 � j f 
 � d f � (B.3)

is a monic causal filter. This observation, which we derived for rational spectra,
plays an important role in the analysis of equalizers.

So far we have assumed the spectrum is rational. But the spectral factorization
as well as formula (B.2) are not restricted to the rational case. We will now give a
more general formulation.

Lemma 10. Let R � k 
 be a correlation function and S � z 
 the associated spectrum.
If S � z 
 satisfies the Paley-Wiener condition� 1

2

� 1
2

lnS � e2 � j f 
 d f � 	 ∞ �

then S � e2 � j f 
 can be written as the product of two functions S � � e2 � j f 
 and S � � e2 � j f 

such that

1. � S � � e2 � j f 
 � 2  � S � � e2 � j f 
 � 2  S � e2 � j f 
 .
2. S � � e2 � j f 
 is causal and S � � e2 � j f 
 is anticausal.

3. 1
S

� 	 e2 � j f 
 is causal and 1
S ! 	 e2 � j f 
 is anticausal.

Proof. Note that lnS � e2 � j f 
 is a periodic function. Write it as

lnS � e2 � j f 
� ∑
n

cne � 2 � j f n

�
Therefore

S � e2 � j f 
  e∑n cne2 � j f n

 ec0 � 2 � ∑n � 1 cne ! 2 � j f n
ec0 � 2 � ∑n � ! 1 cne ! 2 � j f n

 : S � � e2 � j f 
 S � � e � 2 � j f 
 �
It remains to show that S � � e2 � j f 
 and S � � e2 � j f 
 realy have the claimed proper-
ties.

Since S � e � 2 � j f 
 is a power spectral density it is real and even. It follows that
lnS � � e2 � j f 
 is real and even. This implies that c � n  cn  c

�
n. Therefore

S � � e2 � j f 
  ec0 � 2 � ∑n � ! 1 cne ! 2 � j f n

 ec0 � 2 � ∑n � 1 cne2 � j f n

 ec0 � 2 � ∑n � 1 cne ! 2 � j f n � i

 
 S � � e2 � j f 
 � � �
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It follows that � S � � e2 � j f 
 � 2  � S � � e2 � j f 
 � 2. It remains to show that S � � e2 � j f 
 is
causal. Using the Taylor series expansion of ex, ex  ∑k � 0

1
k! xk we obtain

S � � e2 � j f 
� ec0 � 2
�� ∞

∑
k � 0

1
k!



∞

∑
n � 1

cne � 2 � j f n � k
��
�

This shows that S � � e2 � j f 
 is causal.



Index

Q function, 9
upper bounds on, 27

bandlimited channel, 17
BCJR algorithm, 45

capacity, 100
channel

equivalent discrete time, 40
linear time-invariant, 35

channel coding, 100
channel estimation, 36
complex Gaussian random variable,

17
conjugacy constraint, 21
continuous approximation, 28
convolutional codes, 37

distortion, 100

equalization, 47
equalizer

decision feedback, 47
linear, 50

factorization
spectral, 43, 151

filter
minimum phase, 43
whitening, 43
whitening filter, 41

formal power sums, 25
basic properties, 29

Fourier transform, 13

Gram-Schmidt, 12

hyperplane, 8

hypothesis testing, 7, 12

intersymbol interference, 35
irrelevance, 11

linear prediction, 147–149

MAP, 7
maximum a posteriori, 7
maximum likelihood sequence esti-

mator, 35
minimum phase filer, 43

nyquist criterion, 16

Paley-Wiener condition, 153
partial fraction expansion, 29
passband system, 21
probability

of bit error, 45
of sequence error, 45

receiver
suboptimal, 47

sampling theorem, 16
sequence

most probable, 45
Shannon, 99
sinc function, 16
snake oil method, 32
source coding, 100
spectral factorization

for polynomial spectra, 43
for rational spectra, 151

spectrum
of discrete time process, 42

177



178 INDEX

stable
bounded-input bounded-output,

43
state

of sequence estimator, 38
sufficient statistic, 8, 37
surviving path, 40

transformation of Gaussian random
variable, 26

trellis
for sequence estimation, 38

Viterbi algorithm, 45
for sequence estimation, 35, 37–

39
Voronoi region, 8

convexity of, 26

whitening filter, 41, 43

z-transform, 13


