

Fusion of Redundant Autonomous Sensors for Navigation

Yannick Stebler (Ph.D Student) and Dr. Jan Skaloud (Supervisor)

Research Motivation

- Optimal case : GPS positions are available for correcting inertial navigation system positions
 - → Accurate filtered trajectory

- GPS/GLONASS POSITIONS (LOW SAMPLING RATE)
- INERTIAL NAVIGATION SYSTEM POSITIONS (HIGH SAMPLING RATE)
- ···· TRUE TRAJECTORY
- ···· FILTERED TRAJECTORY (THROUGH NAVIGATION FILTER)
- ☐ Bad case: What happens if GPS positions are not available?

INS accuracy degrades with time due to the errors affecting the accelerometers and gyroscopes (integrated in the IMU)

→ Large errors in filtered trajectory

Research Objective:

□ To develop a low-cost autonomous navigation system that can operate in GPS-denied environments or even in GPS-free conditions

Two Research Approaches

USE OF MULTIPLE INERTIAL MEASUREMENT UNITS (IMUs)

The use of redundant IMUs (RIMU) enables:

- ☐ Direct sensor noise estimation
- ☐ Better navigation performance during GPS outages
- lacktriangledown Higher system robustness (fault-detection and isolation capabilities)

How many sensors? Which spatial configuration?

IMPROVED MODELING OF INERTIAL SENSOR ERRORS

An improved modeling of the accelerometer and gyroscope errors enables:

- ☐ To bound the position error growth during GPS outages
- ☐ To make correct stochastic assumptions for navigation filter design
- Development of a new procedure for modeling stochastic errors

filtered trajectory error (e.g. ΔN – North coordinate error) ?

GPS gap of 130 [s]

Standard model Improved model

What is the influence of improved sensor error modeling on true

Applications

☐ Low-cost « black-box » technology for motorcycles enabling precrash accident reconstruction (without GPS)

 Development of an ultra-safe low-cost navigation system for Searchand-Rescue operations using unmanned air vehicules (with GPS)

